This paper studies the linear fractional-order delay differential equation *D−αCx(t)−px(t−τ)=0,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {}^{C}D^{\alpha }_{-}x(t)-px(t-\tau )= 0, $$\end{document} where 0<α=odd integerodd integer<1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$0<\alpha =\frac{\text{odd integer}}{\text{odd integer}}<1$\end{document}, p,τ>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$p, \tau >0$\end{document}, D−αCx(t)=−Γ−1(1−α)∫t∞(s−t)−αx′(s)ds\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${}^{C}D_{-}^{\alpha }x(t)=-\Gamma ^{-1}(1-\alpha )\int _{t}^{\infty }(s-t)^{- \alpha }x'(s)\,ds$\end{document}. We obtain the conclusion that p1/ατ>α/e\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ p^{1/\alpha } \tau >\alpha /e $$\end{document} is a sufficient and necessary condition of the oscillations for all solutions of Eq. (*). At the same time, some sufficient conditions are obtained for the oscillations of multiple delays linear fractional differential equation. Several examples are given to illustrate our theorems.
机构:
School of Mathematics and Physics, China University of Geosciences, Wuhan,430074, ChinaSchool of Mathematics and Physics, China University of Geosciences, Wuhan,430074, China
Wang, Xulong
Wang, Xiangyu
论文数: 0引用数: 0
h-index: 0
机构:
School of Mathematics and Physics, China University of Geosciences, Wuhan,430074, ChinaSchool of Mathematics and Physics, China University of Geosciences, Wuhan,430074, China
Wang, Xiangyu
Liu, Anping
论文数: 0引用数: 0
h-index: 0
机构:
School of Mathematics and Physics, China University of Geosciences, Wuhan,430074, ChinaSchool of Mathematics and Physics, China University of Geosciences, Wuhan,430074, China
机构:
Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
Hainan Normal Univ, Sch Math & Stat, Haikou 571158, Peoples R ChinaUniv Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
Guo, Songbai
Shen, Youjian
论文数: 0引用数: 0
h-index: 0
机构:
Hainan Normal Univ, Sch Math & Stat, Haikou 571158, Peoples R ChinaUniv Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
Shen, Youjian
Shi, Binbin
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Agr Univ, Dept Math & Informat Sci, Tai An 271018, Shandong, Peoples R ChinaUniv Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China