Sufficient and necessary conditions for oscillation of linear fractional-order delay differential equations

被引:0
|
作者
Qiong Meng
Zhen Jin
Guirong Liu
机构
[1] Shanxi University,School of Mathematical Sciences
[2] Shanxi University,Complex Systems Research Center
来源
Advances in Difference Equations | / 2021卷
关键词
Oscillation; Fractional differential equation; Autonomous; Delay; Linear; 34K05; 34K37;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the linear fractional-order delay differential equation *D−αCx(t)−px(t−τ)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {}^{C}D^{\alpha }_{-}x(t)-px(t-\tau )= 0, $$\end{document} where 0<α=odd integerodd integer<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\alpha =\frac{\text{odd integer}}{\text{odd integer}}<1$\end{document}, p,τ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p, \tau >0$\end{document}, D−αCx(t)=−Γ−1(1−α)∫t∞(s−t)−αx′(s)ds\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${}^{C}D_{-}^{\alpha }x(t)=-\Gamma ^{-1}(1-\alpha )\int _{t}^{\infty }(s-t)^{- \alpha }x'(s)\,ds$\end{document}. We obtain the conclusion that p1/ατ>α/e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ p^{1/\alpha } \tau >\alpha /e $$\end{document} is a sufficient and necessary condition of the oscillations for all solutions of Eq. (*). At the same time, some sufficient conditions are obtained for the oscillations of multiple delays linear fractional differential equation. Several examples are given to illustrate our theorems.
引用
收藏
相关论文
共 50 条