Analytic functions in Smirnov classes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^p$$\end{document} with real boundary values II

被引:0
作者
Lisa De Castro
Dmitry Khavinson
机构
[1] University of South Florida,Department of Mathematics and Statistics
关键词
Smirnov classes; Hardy classes; Boundary values; 30H10; 30H15;
D O I
10.1007/s13324-012-0036-3
中图分类号
学科分类号
摘要
Multiply connected Smirnov domains with non-smooth boundaries may admit non-trivial functions of Smirnov class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^p$$\end{document} with real boundary values for certain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 1$$\end{document}. This paper describes the particular geometric boundary characteristics of multiply connected Smirnov domains that make the existence of such functions possible. This extends the similar results in De Castro and Khavinson (2012) obtained for simply connected domains.
引用
收藏
页码:21 / 35
页数:14
相关论文
共 6 条
  • [1] Khavinson D(1983)Factorization theorems for different classes of analytic functions in multiply connected domains Pac. J. Math. 108 295-318
  • [2] Khavinson D(1984)On the removal of periods of conjugate functions in multiply connected domains Mich. Math. J. 31 371-379
  • [3] Khavinson D(1982)Remarks concerning boundary properties of analytic functions of Indiana Univ. Math. J. 31 779-787
  • [4] Khavinson S Ya(1989)-classes Russ. Math. Surv 44 113156-undefined
  • [5] Neuwirth J(1967)Factorization theory for single-valued analytic functions on compact Riemann surfaces with boundary Proc. Am. Math. Soc. 18 958-undefined
  • [6] Newman D(undefined)Positive undefined undefined undefined-undefined