On Evgrafov–Fedoryuk’s theory and quadratic differentials

被引:0
|
作者
Boris Shapiro
机构
[1] Stockholm University,Department of Mathematics
来源
Analysis and Mathematical Physics | 2015年 / 5卷
关键词
Spectral asymptotics; Quadratic differentials; Singular planar metric; Geodesics; Primary 34M40; 34E20; Secondary 34E10;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this note is to recall the theory of the (homogenized) spectral problem for Schrödinger equation with a polynomial potential and its relation with quadratic differentials. We derive from results of this theory that the accumulation rays of the eigenvalues of the latter problem are in 1-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-1$$\end{document}-correspondence with the short geodesics of the singular planar metrics induced by the corresponding quadratic differential. We prove that for a polynomial potential of degree d,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d,$$\end{document} the number of such accumulation rays can be any positive integer between (d-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d-1)$$\end{document} and d2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \atopwithdelims ()2$$\end{document}.
引用
收藏
页码:171 / 181
页数:10
相关论文
共 50 条