A strong approximation of self-normalized sums

被引:0
作者
Miklós Csörgő
ZhiShui Hu
机构
[1] Carleton University,School of Mathematics and Statistics
[2] University of Science and Technology of China,Department of Statistics and Finance, School of Management
来源
Science China Mathematics | 2013年 / 56卷
关键词
strong approximation; self-normalized sums; domain of attraction of the normal law; 60F15; 60F17; 62E20;
D O I
暂无
中图分类号
学科分类号
摘要
Let {X,Xn, n ⩾ 1} be a sequence of independent identically distributed random variables with EX = 0 and assume that EX2I(|X| ⩽ x) is slowly varying as x→∞, i.e., X is in the domain of attraction of the normal law. In this paper a Strassen-type strong approximation is established for self-normalized sums of such random variables.
引用
收藏
页码:149 / 160
页数:11
相关论文
共 22 条
  • [1] Csörgő M.(2002)A glimpse of the impact of Pál Erdős on probability and statistics Canad J Statist 30 493-556
  • [2] Csörgő M.(2012)Strassen-type law of the iterated logarithm for self-normalized increments of sums J Math Anal Appl 393 45-55
  • [3] Hu Z.(1994)Studentized increments of partial sums Sci China Ser A 37 265-276
  • [4] Mei H.(2003)Darling-Erdős theorem for self-normalized sums Ann Probab 31 676-692
  • [5] Csörgő M.(1956)A limit theorem for the maximum of normalized sums of independent random variables Duke Math J 23 143-154
  • [6] Lin Z.(1973)Regularly Varying Sequences Proc Amer Math Soc 41 110-116
  • [7] Shao Q. M.(1989)Self-normalized laws of the iterated logarithm Ann Probab 17 1571-1601
  • [8] Csörgő M.(2008)Towards a universal self-normalized moderate deviation Trans Amer Math Soc 360 4263-4285
  • [9] Szyszkowicz B.(1997)Self-normalized large deviations Ann Probab 25 285-328
  • [10] Wang Q.(1964)An invariance principle for the law of the iterated logarithm Z Wahrscheinlichkeitstheorie und Verw Gebiete 3 211-226