Weak Internal Partition of Regular Graphs

被引:0
作者
Xinkai Tao
Boyuan Liu
Xinmin Hou
机构
[1] University of Science and Technology of China,Key Laboratory of Wu Wen
来源
Communications in Mathematics and Statistics | 2017年 / 5卷
关键词
Internal partition; External partition; Regular graph; 05C70;
D O I
暂无
中图分类号
学科分类号
摘要
An (s, t)-partition of a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} is a partition of V=V1∪V2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V=V_1\cup V_2$$\end{document} such that δ(G[V1])≥s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (G[V_1])\ge s$$\end{document} and δ(G[V2])≥t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (G[V_2])\ge t$$\end{document}. It has been conjectured that, for sufficiently large n, every d-regular graph of order n has a (⌈d2⌉,⌈d2⌉)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lceil \frac{d}{2}\rceil , \lceil \frac{d}{2}\rceil )$$\end{document}-partition (called an internal partition). In this paper, we prove that every d-regular graph of order n has a (⌈d2⌉,⌊d2⌋)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lceil \frac{d}{2}\rceil , \lfloor \frac{d}{2}\rfloor )$$\end{document} partition (called a weak internal partition) for d≤9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le 9$$\end{document} and sufficiently large n.
引用
收藏
页码:335 / 338
页数:3
相关论文
共 5 条
  • [1] Ban A(2016)Internal partitions of regular graphs J. Graph Theory 83 5-18
  • [2] Linial N(1996)Decomposing graphs under degree constraints J. Graph Theory 23 321-324
  • [3] Stiebitz M(2002)On satisfactory partitioning of graphs Congr. Numer. 154 183-194
  • [4] Shafique KH(undefined)undefined undefined undefined undefined-undefined
  • [5] Dutton RD(undefined)undefined undefined undefined undefined-undefined