Brain, plasma and tissue pharmacokinetics of risperidone and 9-hydroxyrisperidone after separate oral administration to rats

被引:0
|
作者
Manickam Aravagiri
Stephen R. Marder
机构
[1] Psychopharmacology Unit,
[2] University of California at Los Angeles,undefined
[3] VA Greater Los Angeles Healthcare System,undefined
[4] Building 210,undefined
[5] #15,undefined
[6] 11301 Wilshire Boulevard,undefined
[7] Los Angeles,undefined
[8] CA 90073,undefined
[9] USA,undefined
来源
Psychopharmacology | 2002年 / 159卷
关键词
Risperidone 9-Hydroxyrisperidone Pharmacokinetics Rat Oral dose Plasma Brain Tissue LC-MS-MS;
D O I
暂无
中图分类号
学科分类号
摘要
Rationale: Following an oral dose of risperidone (RSP), concentrations of its major metabolite 9-hydroxyrisperidone (9-OHRSP) were high in plasma and tissues but disproportionately lower in the brain compared to RSP, indicating that 9-OHRSP may have different pharmacokinetic properties. Objectives: To investigate non-compartmental pharmacokinetics of RSP and 9-OHRSP in plasma, brain and other tissues after separate administration of a single oral dose of 6 mg/kg RSP and 9-OHRSP to rats. Methods: Plasma, brain, liver, lung, kidney and spleen tissues were collected at pre-dose and at 0.5, 1, 2, 5, 6, 12, 24, 36 and 48 h post-dose, homogenized in saline and assayed for RSP and 9-OHRSP using a sensitive and specific liquid chromatography tandem mass spectrometry method. Results: The concentration-time curve of RSP and 9-OHRSP showed that they were readily absorbed and followed a multiphase elimination pattern. The terminal elimination half-life (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}% MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfKttLearuavTnhis1MBaeXatLxBI9gBam % XvP5wqSXMqHnxAJn0BKvguHDwzZbqegm0B1jxALjhiov2DaeHbuLwB % Lnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFf % euY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9 % q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqaba % WaaqaafaaakeaacqWG0baDdaWgaaWcbaWaaSGaaeaacqaIXaqmaeaa % cqaIYaGmaaaabeaaaaa!3E81!\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}} $$\end{document} ) of RSP after the RSP dose was longest in the liver (17.6 h) and shortest in the spleen (1.2 h). The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}% MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfKttLearuavTnhis1MBaeXatLxBI9gBam % XvP5wqSXMqHnxAJn0BKvguHDwzZbqegm0B1jxALjhiov2DaeHbuLwB % Lnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFf % euY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9 % q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqaba % WaaqaafaaakeaacqWG0baDdaWgaaWcbaWaaSGaaeaacqaIXaqmaeaa % cqaIYaGmaaaabeaaaaa!3E81!\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}} $$\end{document} of 9-OHRSP after the RSP dose was shorter in plasma (3.4 h) and other tissues (~8–11 h) than that for RSP but it was longer in the spleen. However, the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}% MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfKttLearuavTnhis1MBaeXatLxBI9gBam % XvP5wqSXMqHnxAJn0BKvguHDwzZbqegm0B1jxALjhiov2DaeHbuLwB % Lnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFf % euY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9 % q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqaba % WaaqaafaaakeaacqWG0baDdaWgaaWcbaWaaSGaaeaacqaIXaqmaeaa % cqaIYaGmaaaabeaaaaa!3E81!\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}} $$\end{document} of 9-OHRSP after the 9-OHRSP dose was shorter in most tissues as compared to the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}% MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfKttLearuavTnhis1MBaeXatLxBI9gBam % XvP5wqSXMqHnxAJn0BKvguHDwzZbqegm0B1jxALjhiov2DaeHbuLwB % Lnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFf % euY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9 % q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqaba % WaaqaafaaakeaacqWG0baDdaWgaaWcbaWaaSGaaeaacqaIXaqmaeaa % cqaIYaGmaaaabeaaaaa!3E81!\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}} $$\end{document} of 9-OHRSP after the RSP dose. The area under the concentration-time curve (AUC) of RSP and 9-OHRSP was 6–67 times higher in the plasma and tissues than in the brain. AUCs of 9-OHRSP in tissues after the RSP dose were 2–5 times higher than those for RSP, except in the brain, where AUCs of RSP and 9-OHRSP were similar. Conclusion: Pharmacokinetics of 9-OHRSP in many tissues were different after RSP and 9-OHRSP doses. The reason for disproportionate brain levels of 9-OHRSP is not clear. The overall exposure to active drug in the brain as represented by AUC was similar after the RSP and 9-OHRSP doses and the 9-OHRSP is probably an equal contributor to the pharmacological actions of RSP.
引用
收藏
页码:424 / 431
页数:7
相关论文
共 50 条
  • [21] Relationship between prolactin secretion, and plasma risperidone and 9-hydroxyrisperidone concentrations in adolescents with schizophreniform disorder
    Duval, Fabrice
    Guillon, Marie-Sabine
    Mokrani, Marie-Claude
    Crocq, Marc-Antoine
    Duarte, Frederico Garcia
    PSYCHONEUROENDOCRINOLOGY, 2008, 33 (02) : 255 - 259
  • [22] Simultaneous determination of risperidone and 9-hydroxyrisperidone in plasma by liquid chromatography/electrospray tandem mass spectrometry
    Aravagiri, M
    Marder, SR
    JOURNAL OF MASS SPECTROMETRY, 2000, 35 (06): : 718 - 724
  • [23] Analysis of risperidone and 9-hydroxyrisperidone in human plasma, urine and saliva by MEPS-LC-UV
    Mandrioli, Roberto
    Mercolini, Laura
    Lateana, Domenico
    Boncompagni, Giancarlo
    Raggi, Maria Augusta
    JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES, 2011, 879 (02): : 167 - 173
  • [24] Simultaneous determination of risperidone and 9-hydroxyrisperidone enantiomers in human blood plasma by liquid chromatography with electrochemical detection
    Locatelli, Igor
    Mrhar, Ales
    Grabnar, Iztok
    JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2009, 50 (05) : 905 - 910
  • [25] Effect of Cyamemazine on the Steady-State Plasma Concentrations of Risperidone and 9-Hydroxyrisperidone: A Preliminary Retrospective Study
    Lancelin, Frederique
    Bourcier, Elsa
    Le Masson, Valerie
    Lemeille, Yolande
    Brovedani, Sophie
    Paubel, Pascal
    Piketty, Marie-Liesse
    THERAPEUTIC DRUG MONITORING, 2010, 32 (06) : 757 - 761
  • [26] Serum concentrations of risperidone and 9-hydroxyrisperidone after administration of the long-acting injectable form of risperidone - Evidence from a routine therapeutic drug monitoring service
    Castberg, I
    Spigset, A
    THERAPEUTIC DRUG MONITORING, 2005, 27 (01) : 103 - 106
  • [27] Possible relationship between combined plasma concentrations of risperidone plus 9-hydroxyrisperidone and extrapyramidal symptoms - Preliminary study
    Yoshimura, R
    Ueda, N
    Nakamura, J
    NEUROPSYCHOBIOLOGY, 2001, 44 (03) : 129 - 133
  • [28] The Validation of an LC-MS Method for the Determination of Risperidone and its Active Metabolite 9-Hydroxyrisperidone in Human Plasma
    Li Zhang
    Zheng Jiao
    Zouqing Yao
    Yan Zhong
    Mingkang Zhong
    Yunqiu Yu
    Chromatographia, 2005, 61 : 245 - 251
  • [29] DETERMINATION OF RISPERIDONE AND 9-HYDROXYRISPERIDONE IN HUMAN PLASMA BY HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY WITH ELECTROCHEMICAL DETECTION
    LEMOING, JP
    EDOUARD, S
    LEVRON, JC
    JOURNAL OF CHROMATOGRAPHY-BIOMEDICAL APPLICATIONS, 1993, 614 (02): : 333 - 339
  • [30] The validation of an LC-MS method for the determination of risperidone and its active metabolite 9-hydroxyrisperidone in human plasma
    Zhang, L
    Jiao, Z
    Yao, ZQ
    Zhong, Y
    Zhong, MK
    Yu, YQ
    CHROMATOGRAPHIA, 2005, 61 (5-6) : 245 - 251