Minkowski Length of 3D Lattice Polytopes

被引:0
作者
Olivia Beckwith
Matthew Grimm
Jenya Soprunova
Bradley Weaver
机构
[1] Harvey Mudd College,Department of Mathematics
[2] UCSD,Department of Mathematics
[3] Kent State University,Department of Mathematics
[4] Grove City College,Department of Mathematics
来源
Discrete & Computational Geometry | 2012年 / 48卷
关键词
Toric codes; Lattice polytopes; Minkowski sum; Minkowski length;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Minkowski length L(P) of a lattice polytope P, which is defined to be the largest number of non-trivial primitive segments whose Minkowski sum lies in P. The Minkowski length represents the largest possible number of factors in a factorization of polynomials with exponent vectors in P, and shows up in lower bounds for the minimum distance of toric codes. In this paper we give a polytime algorithm for computing L(P) where P is a 3D lattice polytope.
引用
收藏
页码:1137 / 1158
页数:21
相关论文
共 9 条
[1]  
Alexander I.B.(1994)Polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed Math. Oper. Res. 19 769-779
[2]  
Kasprzyk A.M.(2006)Toric Fano three-folds with terminal singularities Tohoku Math. J. (2) 58 101-121
[3]  
Köppe M.(2007)A primal Barvinok algorithm based on irrational decompositions SIAM J. Discrete Math. 21 220-236
[4]  
Little J.(2006)Toric surface codes and Minkowski sums SIAM J. Discrete Math. 20 999-1014
[5]  
Schenck H.(2007)On the parameters of r-dimensional toric codes Finite Fields Appl. 13 962-976
[6]  
Ruano D.(1985)Integral polyhedra in three space Math. Oper. Res. 10 403-438
[7]  
Scarf H.E.(2008/09)Toric surface codes and Minkowski length of polygons SIAM J. Discrete Math. 23 384-400
[8]  
Soprunov I.(undefined)undefined undefined undefined undefined-undefined
[9]  
Soprunova J.(undefined)undefined undefined undefined undefined-undefined