Nonexistence of weak solutions for some degenerate elliptic and parabolic problems on ℝn

被引:0
作者
Mitidieri E. [1 ]
Pohozaev S.I. [2 ]
机构
[1] Dipartimento di Scienze Matematiche, Univ. degli Studi di Trieste, 34127 Trieste
[2] Steklov Mathematical Institute, 117966 Moscow
关键词
Weak Solution; Parabolic Problem;
D O I
10.1007/PL00001368
中图分类号
学科分类号
摘要
[No abstract available]
引用
收藏
页码:189 / 220
页数:31
相关论文
共 23 条
[1]  
Brezis H., Cabre X., Some simple nonlinear PDE's without solutions, Boll. Unione Mat. Ital. Sez. B, 8, pp. 223-262, (1998)
[2]  
Brezis H., Vazquez J.L., Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complutense Madr., 10, pp. 443-469, (1997)
[3]  
Davies E.B., Hinz A.M., Explicit constants for Rellich inequalities in L<sup>p</sup>(Ω), Math. Z., 227, pp. 522-523, (1998)
[4]  
Caristi G., Mitidieri E., Non-existence of Positive Solutions of Quasilinear Elliptic Equations and Systems, Advances in Differential Equations, 2, 3, pp. 319-359, (1997)
[5]  
Ding W.-Y., Ni W.-M., On the Elliptic Equation Δu + Ku<sup>N+2/N-2</sup> = 0 and Related Topics, Duke Math. J., 52, pp. 486-506, (1985)
[6]  
Deng K., Levine H.A., The role of critical exponents in blow-up theorems: The sequel, J. Math. Anal. Appl., 243, 1, pp. 85-126, (2000)
[7]  
Egorov Y.V., Galaktionov V.A., Kondratiev V.A., Pohozaev S.I., On the necessary conditions of global existence to a quasilinear inequality in the half-space, C. R. Acad. Sci. Paris Ser. I Math., 330, 2, pp. 93-98, (2000)
[8]  
Giacomoni J., Some results about blow-up and global existence to a semilinear degenerate heat equation, Rev. Mat. Complut., 11, 2, pp. 325-351, (1998)
[9]  
Gazzola F., Grunau H.-C., Mitidieri E., Hardy Inequalities with Optimal Constants and Reminder Terms, pp. 1-21, (2000)
[10]  
Galaktionov V.A., Levine H.A., A general approach to critical Fujita exponents in nonlinear parabolic problems, Nonlinear Anal., 34, 7, pp. 1005-1027, (1998)