The commuting local Hamiltonian problem on locally expanding graphs is approximable in NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf{{NP}}$$\end{document}

被引:0
作者
Dorit Aharonov
Lior Eldar
机构
[1] The Hebrew University,School of Computer Science and Engineering
关键词
Local Hamiltonian; PCP; Quantum PCP; Approximation; Commuting local Hamiltonian;
D O I
10.1007/s11128-014-0877-9
中图分类号
学科分类号
摘要
The local Hamiltonian problem is famously complete for the class QMA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf{{QMA}}$$\end{document}, the quantum analogue of NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf{{NP}}$$\end{document}. The complexity of its semiclassical version, in which the terms of the Hamiltonian are required to commute (the CLH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf{{CLH}}$$\end{document} problem), has attracted considerable attention recently due to its intriguing nature, as well as in relation to growing interest in the qPCP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf{{qPCP}}$$\end{document} conjecture. We show here that if the underlying bipartite interaction graph of the CLH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf{{CLH}}$$\end{document} instance is a good locally expanding graph, namely the expansion of any constant-size set is ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-close to optimal, then approximating its ground energy to within additive factor O(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\varepsilon )$$\end{document} lies in NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf{{NP}}$$\end{document}. The proof holds for k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-local Hamiltonians for any constant k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} and any constant dimensionality of particles d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}. We also show that the approximation problem of CLH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf{{CLH}}$$\end{document} on such good local expanders is NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf{{NP}}$$\end{document}-hard. This implies that too good local expansion of the interaction graph constitutes an obstacle against quantum hardness of the approximation problem, though it retains its classical hardness. The result highlights new difficulties in trying to mimic classical proofs (in particular, Dinur’s PCP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf{{PCP}}$$\end{document} proof) in an attempt to prove the quantum PCP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf{{PCP}}$$\end{document} conjecture. A related result was discovered recently independently by Brandão and Harrow, for 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-local general Hamiltonians, bounding the quantum hardness of the approximation problem on good expanders, though no NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf{{NP}}$$\end{document} hardness is known in that case.
引用
收藏
页码:83 / 101
页数:18
相关论文
共 36 条
[1]  
Aharonov D(2013)The Quantum SIGACT News 44 47-79
[2]  
Arad I(2009) Conjecture Guest column: the quantum PCP conjecture Math. Phys. 287 41-65
[3]  
Vidick T(2011)The power of quantum systems on a line Comm Quantum Inf. Comput. 11 1019-555
[4]  
Aharonov D(1998)A note about a partial no-go theorem for quantum J. ACM 45 501-122
[5]  
Gottesman D(1998)Proof verification and intractability of Approximation problems J. ACM 45 70-215
[6]  
Irani S(2005)Probabilistic checking of proofs: a new characterization of Quantum Inf. Comput. 5 187-1050
[7]  
Kempe J(2008)Commutative version of the k-local Hamiltonian problem and common eigenspace problem Phys. Rev. Lett. 101 070503-859
[8]  
Arad I(2012)Simulation of many-body Hamiltonians using perturbation theory with bounded-strength interactions SIAM J. Comput. 41 1028-429
[9]  
Arora S(2001)Approximation algorithms for QMA complete problems J. ACM 48 798-30
[10]  
Lund C(2013)Some optimal inapproximability results Quantum Inf. Comput. 13 393-924