Compact composition operators on Hardy-Orlicz and Bergman-Orlicz spaces

被引:0
作者
Daniel Li
机构
[1] Univ Lille-Nord-de-France,
[2] UArtois,undefined
[3] Laboratoire de Mathématiques de Lens EA 2462,undefined
[4] Fédération CNRS Nord-Pas-de-Calais FR 2956,undefined
[5] Faculté des Sciences Jean Perrin,undefined
来源
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas | 2011年 / 105卷
关键词
Bergman spaces; Bergman-Orlicz spaces; Blaschke product; Carleson function; Carleson measure; Compactness; Composition operator; Hardy spaces; Hardy-Orlicz spaces; Nevanlinna counting function; Primary 47B33; Secondary 30H10; 30H20; 30J10; 46E15;
D O I
暂无
中图分类号
学科分类号
摘要
It is known, from results of MacCluer and Shapiro (Canad. J. Math. 38(4):878–906, 1986), that every composition operator which is compact on the Hardy space Hp, 1 ≤ p < ∞, is also compact on the Bergman space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathfrak B}^p = L^{p}_{a} ({\mathbb D})}$$\end{document}. In this survey, after having described the above known results, we consider Hardy-Orlicz HΨ and Bergman-Orlicz \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathfrak B}^\Psi}$$\end{document} spaces, characterize the compactness of their composition operators, and show that there exist Orlicz functions for which there are composition operators which are compact on HΨ but not on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathfrak B}^\Psi}$$\end{document}.
引用
收藏
页码:247 / 260
页数:13
相关论文
共 14 条
[1]  
Boyd D.M.(1975/76)Composition operators on the Bergman space Colloq. Math. 34 127-136
[2]  
Hastings W.W.(1975)A Carleson measure theorem for Bergman spaces Proc. Amer. Math. Soc. 52 237-241
[3]  
Lefèvre P.(2010)Composition operators on Hardy-Orlicz spaces Memoirs Amer. Math. Soc. 207 974-248
[4]  
Li D.(1985)Compact composition operators on Michigan Math. J. 32 237-906
[5]  
Queffélec H.(1986)( Canad. J. Math. 38 878-449
[6]  
Rodríguez-Piazza L.(1968)) Canad. J. Math. 20 442-404
[7]  
MacCluer B.D.(1987)Angular derivatives and compact composition operators on the Hardy and Bergman spaces Annals Math. 125 375-496
[8]  
MacCluer B.(1973)Composition operators Indiana Univ. Math. J. 23 471-139
[9]  
Shapiro J.H.(1980)The essential norm of a composition operator Illinois J. Math. 24 113-undefined
[10]  
Nordgren E.A.(undefined)Compact, nuclear, and Hilbert-Schmidt composition operators on undefined undefined undefined-undefined