Topological data analysis and cosheaves

被引:0
作者
Justin Michael Curry
机构
[1] Duke University,Department of Mathematics
来源
Japan Journal of Industrial and Applied Mathematics | 2015年 / 32卷
关键词
Topological data analysis; Persistent homology; Sheaves and cosheaves; Barcodes; o-minimal topology; 55U99; 46M20; 32S60; 16G20; 62-07; 03C64;
D O I
暂无
中图分类号
学科分类号
摘要
This paper contains an expository account of persistent homology and its usefulness for topological data analysis. An alternative foundation for level set persistence is presented using sheaves and cosheaves.
引用
收藏
页码:333 / 371
页数:38
相关论文
共 21 条
[1]  
Bott R(1988)Morse theory indomitable Publications Mathématiques de l’IHÉS 68 99-114
[2]  
Carlsson G(2008)On the local behavior of spaces of natural images Int. J. Comput. Vis. 76 1-12
[3]  
Ishkhanov T(2009)The theory of multidimensional persistence Discret. Comput. Geom. 42 71-93
[4]  
De Silva V(2007)Stability of persistence diagrams Discret. Comput. Geom. 37 103-120
[5]  
Zomorodian A(2005)Quiver representations Not. AMS 52 200-206
[6]  
Carlsson G(1998)Verdier and strict thom stratifications in o-minimal structures Ill. J. Math. 42 347-356
[7]  
Zomorodian A(2012)Notes on topological stability Bull. (New Ser.) Am. Math. Soc. 49 475-506
[8]  
Cohen-Steiner D(2011)Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival Proc. Natl. Acad. Sci. 108 7265-7270
[9]  
Edelsbrunner H(2007)Coverage in sensor networks via persistent homology Algebr. Geom. Topol. 7 24-274
[10]  
Harer J(2005)Computing persistent homology Discret. Comput. Geom. 33 249-undefined