Convergence of empirical spectral distributions of large dimensional quaternion sample covariance matrices

被引:0
作者
Huiqin Li
Zhi Dong Bai
Jiang Hu
机构
[1] Northeast Normal University,KLASMOE and School of Mathematics and Statistics
来源
Annals of the Institute of Statistical Mathematics | 2016年 / 68卷
关键词
Empirical spectral distribution; LSD; Quaternion matrices; Sample covariance matrix;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish the limit of empirical spectral distributions of quaternion sample covariance matrices. Motivated by Bai and Silverstein (Spectral analysis of large dimensional random matrices, Springer, New York, 2010) and Marčenko and Pastur (Matematicheskii Sb, 114:507–536, 1967), we can extend the results of the real or complex sample covariance matrix to the quaternion case. Suppose Xn=(xjk(n))p×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf X_n = ({x_{jk}^{(n)}})_{p\times n}$$\end{document} is a quaternion random matrix. For each n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}, the entries {xij(n)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{x_{ij}^{(n)}\}$$\end{document} are independent random quaternion variables with a common mean μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and variance σ2>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^2>0$$\end{document}. It is shown that the empirical spectral distribution of the quaternion sample covariance matrix Sn=n-1XnXn∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf S_n=n^{-1}\mathbf X_n\mathbf X_n^*$$\end{document} converges to the Marčenko–Pastur law as p→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\rightarrow \infty $$\end{document}, n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document} and p/n→y∈(0,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p/n\rightarrow y\in (0,+\infty )$$\end{document}.
引用
收藏
页码:765 / 785
页数:20
相关论文
共 6 条
  • [1] Akemann G(2005)The complex Laguerre symplectic ensemble of non-Hermitian matrices Nuclear Physics B 730 253-299
  • [2] Kanzieper E(2002)Eigenvalue correlations in non-Hermitean symplectic random matrices Journal of Physics A: Mathematical and General 35 6631-52
  • [3] Wishart J(1928)The generalised product moment distribution in samples from a normal multivariate population Biometrika 20 32-743
  • [4] Wolf LA(1936)Similarity of matrices in which the elements are real quaternions Bulletin of the American Mathematical Society 42 737-251
  • [5] Zhang F(1995)On numerical range of normal matrices of quaternions Journal of Mathmatical and Physical Science 29 235-57
  • [6] Zhang F(1997)Quaternions and matrices of quaternions Linear Algebra and Its Applications 251 21-undefined