On σ-semipermutable Subgroups of Finite Groups

被引:0
作者
Wen Bin Guo
Alexander N. Skiba
机构
[1] University of Science and Technology of China,Department of Mathematics
[2] Francisk Skorina Gomel State University,Department of Mathematics and Technologies of Programming
来源
Acta Mathematica Sinica, English Series | 2018年 / 34卷
关键词
Finite group; Hall subgroup; -soluble group; -supersoluble group; -semipermutable subgroup; 20D10; 20D15; 20D20; 20D25;
D O I
暂无
中图分类号
学科分类号
摘要
Let σ = {σi|i ∈ I} be some partition of the set of all primes ℙ, G a finite group and σ(G) = {σi|σi ∩ π(G) ≠ ∅}. A set H of subgroups of G is said to be a complete Hall σ-set of G if every member ≠ 1 of H is a Hall σi-subgroup of G for some σi ∈ σ and H contains exactly one Hall σi-subgroup of G for every σi ∈ σ(G). A subgroup H of G is said to be: σ-semipermutable in G with respect to H if HHix = HixH for all x ∈ G and all Hi ∈ H such that (|H|, |Hi|) = 1; σ-semipermutable in G if H is σ-semipermutable in G with respect to some complete Hall σ-set of G. We study the structure of G being based on the assumption that some subgroups of G are σ-semipermutable in G.
引用
收藏
页码:1379 / 1390
页数:11
相关论文
共 42 条
[1]  
Beidleman J. C.(2017)On J. Grou. Theory 20 955-964
[2]  
Skiba A. N.(2014)-quasinormal subgroups of finite groups J. Algebra 414 82-94
[3]  
Bercovich Ya.(1990)-supersolvability and actions on Problem. Alg. 5 80-82
[4]  
Isaacs I. M.(1970)-groups stabilizing certain subgroups Math. Z. 116 15-17
[5]  
Borovikov M. T.(2014)Groups with permutable subgroups of mutually simple orders Comm. Algebra 42 4188-4205
[6]  
Buckley J.(2017)Finite groups whose minimal subgroups are normal J. Grou. Theory 20 169-183
[7]  
Chen X. Gu.o,W.(2008)Some conditions under which a finite group belongs a Baer local formation Algebr. Colloquium 15 185-192
[8]  
Skiba A. N.(2010)Groups with maximal subgroups of Sylow subgroups Math. Nachr. 283 1603-1612
[9]  
Guo W.(2017)-permutably embedded Commun. Math. Stat. 5 83-92
[10]  
Skiba A. N.(2018)Schur–Zassenhaus theorem for J. Algebra Appl. 17 1850031-169