The torus operator in holography

被引:0
|
作者
Donald Marolf
Jason Wien
机构
[1] University of California Santa Barbara,Department of Physics
来源
Journal of High Energy Physics | / 2018卷
关键词
AdS-CFT Correspondence; Black Holes; Conformal Field Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the non-local operator T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{T} $$\end{document} defined in 2-dimensional CFTs by the path integral over a torus with two punctures. Using the AdS/CFT correspondence, we study the spectrum and ground state of this operator in holographic such CFTs in the limit of large central charge c. In one region of moduli space, we argue that the operator retains a finite gap and has a ground state that differs from the CFT vacuum only by order one corrections. In this region the torus operator is much like the cylinder operator. But in another region of moduli space we find a puzzle. Although our T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{T} $$\end{document} is of the manifestly positive form A†A, studying the most tractable phases of Tr(T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{T} $$\end{document}n) suggests that T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{T} $$\end{document} has negative eigenvalues. It seems clear that additional phases must become relevant at large n, perhaps leading to novel behavior associated with a radically different ground state or a much higher density of states. By studying the action of two such torus operators on the CFT ground state, we also provide evidence that, even at large n, the relevant bulk saddles have t = 0 surfaces with small genus.
引用
收藏
相关论文
共 50 条
  • [41] Superconformal RG interfaces in holography
    Arav, Igal
    Cheung, K. C. Matthew
    Gauntlett, Jerome P.
    Roberts, Matthew M.
    Rosen, Christopher
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (11)
  • [42] On volumes of subregions in holography and complexity
    Omer Ben-Ami
    Dean Carmi
    Journal of High Energy Physics, 2016
  • [43] Holography and the electroweak phase transition
    Creminelli, P
    Nicolis, A
    Rattazzi, R
    JOURNAL OF HIGH ENERGY PHYSICS, 2002, (03): : 1221 - 1247
  • [44] Flat holography and Carrollian fluids
    Luca Ciambelli
    Charles Marteau
    Anastasios C. Petkou
    P. Marios Petropoulos
    Konstantinos Siampos
    Journal of High Energy Physics, 2018
  • [45] Signals of multiparty entanglement and holography
    Vijay Balasubramanian
    Monica Jinwoo Kang
    Chitraang Murdia
    Simon F. Ross
    Journal of High Energy Physics, 2025 (6)
  • [46] Superconformal RG interfaces in holography
    Igal Arav
    K. C. Matthew Cheung
    Jerome P. Gauntlett
    Matthew M. Roberts
    Christopher Rosen
    Journal of High Energy Physics, 2020
  • [47] Squashed holography with scalar condensates
    Gabriele Conti
    Thomas Hertog
    Yannick Vreys
    Journal of High Energy Physics, 2018
  • [48] Emergent horizons and causal structures in holography
    Banerjee, Avik
    Kundu, Arnab
    Kundu, Sandipan
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (09):
  • [49] Large D holography with metric deformations
    Tomas Andrade
    Christiana Pantelidou
    Benjamin Withers
    Journal of High Energy Physics, 2018
  • [50] Semiclassical torus blocks in the t-channel
    Juan Ramos Cabezas
    Journal of High Energy Physics, 2020