机构:University of California Santa Barbara,Department of Physics
Donald Marolf
Jason Wien
论文数: 0引用数: 0
h-index: 0
机构:University of California Santa Barbara,Department of Physics
Jason Wien
机构:
[1] University of California Santa Barbara,Department of Physics
来源:
Journal of High Energy Physics
|
/
2018卷
关键词:
AdS-CFT Correspondence;
Black Holes;
Conformal Field Theory;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We consider the non-local operator T\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{T} $$\end{document} defined in 2-dimensional CFTs by the path integral over a torus with two punctures. Using the AdS/CFT correspondence, we study the spectrum and ground state of this operator in holographic such CFTs in the limit of large central charge c. In one region of moduli space, we argue that the operator retains a finite gap and has a ground state that differs from the CFT vacuum only by order one corrections. In this region the torus operator is much like the cylinder operator. But in another region of moduli space we find a puzzle. Although our T\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{T} $$\end{document} is of the manifestly positive form A†A, studying the most tractable phases of Tr(T\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{T} $$\end{document}n) suggests that T\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{T} $$\end{document} has negative eigenvalues. It seems clear that additional phases must become relevant at large n, perhaps leading to novel behavior associated with a radically different ground state or a much higher density of states. By studying the action of two such torus operators on the CFT ground state, we also provide evidence that, even at large n, the relevant bulk saddles have t = 0 surfaces with small genus.
机构:
University of Pennsylvania,Department of Physics and AstronomyUniversity of Pennsylvania,Department of Physics and Astronomy
Vijay Balasubramanian
Monica Jinwoo Kang
论文数: 0引用数: 0
h-index: 0
机构:
Vrije Universiteit Brussel and International Solvay Institutes,Theoretische NatuurkundeUniversity of Pennsylvania,Department of Physics and Astronomy
Monica Jinwoo Kang
Chitraang Murdia
论文数: 0引用数: 0
h-index: 0
机构:
University of Oxford,Rudolf Peierls Centre for Theoretical PhysicsUniversity of Pennsylvania,Department of Physics and Astronomy
Chitraang Murdia
Simon F. Ross
论文数: 0引用数: 0
h-index: 0
机构:
University of Pennsylvania,Department of Physics and AstronomyUniversity of Pennsylvania,Department of Physics and Astronomy