The torus operator in holography

被引:0
|
作者
Donald Marolf
Jason Wien
机构
[1] University of California Santa Barbara,Department of Physics
来源
Journal of High Energy Physics | / 2018卷
关键词
AdS-CFT Correspondence; Black Holes; Conformal Field Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the non-local operator T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{T} $$\end{document} defined in 2-dimensional CFTs by the path integral over a torus with two punctures. Using the AdS/CFT correspondence, we study the spectrum and ground state of this operator in holographic such CFTs in the limit of large central charge c. In one region of moduli space, we argue that the operator retains a finite gap and has a ground state that differs from the CFT vacuum only by order one corrections. In this region the torus operator is much like the cylinder operator. But in another region of moduli space we find a puzzle. Although our T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{T} $$\end{document} is of the manifestly positive form A†A, studying the most tractable phases of Tr(T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{T} $$\end{document}n) suggests that T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{T} $$\end{document} has negative eigenvalues. It seems clear that additional phases must become relevant at large n, perhaps leading to novel behavior associated with a radically different ground state or a much higher density of states. By studying the action of two such torus operators on the CFT ground state, we also provide evidence that, even at large n, the relevant bulk saddles have t = 0 surfaces with small genus.
引用
收藏
相关论文
共 50 条
  • [31] Double holography of entangled universes
    Myers, Robert C.
    Ruan, Shan-Ming
    Ugajin, Tomonori
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (07):
  • [32] Entanglement, holography and causal diamonds
    Jan de Boer
    Felix M. Haehl
    Michal P. Heller
    Robert C. Myers
    Journal of High Energy Physics, 2016
  • [33] Universal local operator quenches and entanglement entropy
    Bhattacharyya, Arpan
    Takayanagi, Tadashi
    Umemoto, Koji
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (11)
  • [34] Universal local operator quenches and entanglement entropy
    Arpan Bhattacharyya
    Tadashi Takayanagi
    Koji Umemoto
    Journal of High Energy Physics, 2019
  • [35] Flat holography and Carrollian fluids
    Ciambelli, Luca
    Marteau, Charles
    Petkou, Anastasios C.
    Petropoulos, P. Marios
    Siampos, Konstantinos
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (07):
  • [36] Squashed holography with scalar condensates
    Conti, Gabriele
    Hertog, Thomas
    Vreys, Yannick
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (09):
  • [37] Entanglement, holography and causal diamonds
    de Boer, Jan
    Haehl, Felix M.
    Heller, Michal P.
    Myers, Robert C.
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (08):
  • [38] Integrable subsectors from holography
    Robert de Mello Koch
    Minkyoo Kim
    Hendrik J. R. Van Zyl
    Journal of High Energy Physics, 2018
  • [39] Multipartite entanglement and topology in holography
    Jonathan Harper
    Journal of High Energy Physics, 2021
  • [40] Integrable subsectors from holography
    Koch, Robert de Mello
    Kim, Minkyoo
    Van Zyl, Hendrik J. R.
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (05):