The torus operator in holography

被引:0
|
作者
Donald Marolf
Jason Wien
机构
[1] University of California Santa Barbara,Department of Physics
来源
Journal of High Energy Physics | / 2018卷
关键词
AdS-CFT Correspondence; Black Holes; Conformal Field Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the non-local operator T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{T} $$\end{document} defined in 2-dimensional CFTs by the path integral over a torus with two punctures. Using the AdS/CFT correspondence, we study the spectrum and ground state of this operator in holographic such CFTs in the limit of large central charge c. In one region of moduli space, we argue that the operator retains a finite gap and has a ground state that differs from the CFT vacuum only by order one corrections. In this region the torus operator is much like the cylinder operator. But in another region of moduli space we find a puzzle. Although our T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{T} $$\end{document} is of the manifestly positive form A†A, studying the most tractable phases of Tr(T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{T} $$\end{document}n) suggests that T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{T} $$\end{document} has negative eigenvalues. It seems clear that additional phases must become relevant at large n, perhaps leading to novel behavior associated with a radically different ground state or a much higher density of states. By studying the action of two such torus operators on the CFT ground state, we also provide evidence that, even at large n, the relevant bulk saddles have t = 0 surfaces with small genus.
引用
收藏
相关论文
共 50 条
  • [1] The torus operator in holography
    Marolf, Donald
    Wien, Jason
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (01):
  • [2] Renyi entropies of free bosons on the torus and holography
    Datta, Shouvik
    David, Justin R.
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (04):
  • [3] Rényi entropies of free bosons on the torus and holography
    Shouvik Datta
    Justin R. David
    Journal of High Energy Physics, 2014
  • [4] INTERTWINING OPERATOR REALIZATION OF ANTI-DE SITTER HOLOGRAPHY
    Aizawa, N.
    Dobrev, V. K.
    REPORTS ON MATHEMATICAL PHYSICS, 2015, 75 (02) : 179 - 197
  • [5] Holography of Wilson-loop expectation values with local operator insertions
    Miwa, Akitsugu
    Yoneya, Tamiaki
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (12):
  • [6] Reflected entropy in double holography
    Ling, Yi
    Liu, Peng
    Liu, Yuxuan
    Niu, Chao
    Xian, Zhuo-Yu
    Zhang, Cheng-Yong
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (02)
  • [7] Reflected entropy in double holography
    Yi Ling
    Peng Liu
    Yuxuan Liu
    Chao Niu
    Zhuo-Yu Xian
    Cheng-Yong Zhang
    Journal of High Energy Physics, 2022
  • [8] De Sitter holography and entanglement entropy
    Dong, Xi
    Silverstein, Eva
    Torroba, Gonzalo
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (07):
  • [9] Complexity of mixed states in QFT and holography
    Elena Caceres
    Shira Chapman
    Josiah D. Couch
    Juan P. Hernandez
    Robert C. Myers
    Shan-Ming Ruan
    Journal of High Energy Physics, 2020
  • [10] De Sitter holography and entanglement entropy
    Xi Dong
    Eva Silverstein
    Gonzalo Torroba
    Journal of High Energy Physics, 2018