共 21 条
- [1] On the Exponential Diophantine Equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(a^{n}-2)(b^{n}-2)=x^{2}$$\end{document} Mathematical Notes, 2022, 111 (5-6) : 903 - 912
- [2] On the Diophantine equation x2+C=yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^2+C=y^n$$\end{document} Indian Journal of Pure and Applied Mathematics, 2024, 55 (1) : 69 - 77
- [3] Zero-Sum Km\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_m$$\end{document} Over Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathbb {Z}}}}$$\end{document} and the Story of K4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_4$$\end{document} Graphs and Combinatorics, 2019, 35 (4) : 855 - 865
- [4] On the exponential Diophantine equation x2+2apb=yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{2}+2^{a}p^{b}=y^{n}$$\end{document} Periodica Mathematica Hungarica, 2015, 70 (2) : 233 - 247
- [5] On the exponential diophantine equation am2+1x+bm2-1y=(cm)z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( am^{2}+1\right) ^{x}+\left( bm^{2}-1\right) ^{y}=(cm)^{z}$$\end{document} with c∣m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ c\mid m $$\end{document} Periodica Mathematica Hungarica, 2017, 75 (2) : 143 - 149
- [6] On solutions of the simultaneous Pell equations x2-a2-1y2=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ x^{2}-\left( a^{2}-1\right) y^{2}=1$$\end{document} and y2-pz2=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y^{2}-pz^{2}=1$$\end{document} Periodica Mathematica Hungarica, 2016, 73 (1) : 130 - 136
- [7] The extensibility of the D(±k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(\pm k)$$\end{document}-triple {k∓1,k,4k∓1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{k\mp 1,k, 4k\mp 1\}$$\end{document} Afrika Matematika, 2017, 28 (3-4) : 563 - 574
- [8] On the Diophantine equation ax+by=(a+2)z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a^{x} + b^{y} = (a + 2)^z}$$\end{document} Acta Mathematica Hungarica, 2016, 149 (1) : 1 - 9
- [9] D(-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(-1)$$\end{document} tuples in imaginary quadratic fields Acta Mathematica Hungarica, 2021, 164 (2) : 556 - 569
- [10] On the extendibility of certain D(-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(-1)$$\end{document}-pairs in imaginary quadratic rings INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 56 (1) : 156 - 162