Parasitic Eigenvalues of Spectral Problems for the Laplacian with Third-Type Boundary Conditions

被引:0
作者
S. A. Nazarov
机构
[1] Institute of Problems of Mechanical Engineering,
[2] Russian Academy of Sciences,undefined
来源
Computational Mathematics and Mathematical Physics | 2023年 / 63卷
关键词
spectral problem for Laplacian; Robin and Steklov boundary conditions with a small parameter; asymptotics of negative eigenvalues; boundary layer; modeling;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1237 / 1253
页数:16
相关论文
共 63 条
[1]  
Kozlov V.(2006)On the Hadamard formula for nonsmooth domains J. Differ. Equations 230 532-555
[2]  
Kozlov V. A.(2012)On the Hadamard formula for second order systems in non-smooth domains Commun. Part. Differ. Equations 37 901-933
[3]  
Nazarov S. A.(1991)“Two-term asymptotics of solutions of spectral problems with singular perturbations,” Math USSR-Sb. 69 307-340
[4]  
Nazarov S. A.(2007)Asymptotic simulation of elastic bodies with damaged or hardened surfaces Dokl. Phys. 52 436-441
[5]  
Nazarov S. A.(2008)Asymptotics of solutions and modelling the problems of elasticity theory in domains with rapidly oscillating boundaries Izv. Math. 72 509-564
[6]  
Nazarov S. A.(2000)“Spectral problems in singularly perturbed domains and self-adjoint extensions of differential operators,” Trans. Am. Math Soc. Ser. 2 199 127-181
[7]  
Kamotskii I. V.(2015)Modeling of a singularly perturbed spectral problem by means of self-adjoint extensions of the operators of the limit problems Funct. Anal. Appl. 49 25-39
[8]  
Nazarov S. A.(2008)On the principal eigenvalue of a Robin problem with a large parameter Math. Nachr. 281 272-281
[9]  
Nazarov S. A.(2013)On the asymptotics of the principal eigenvalue problem for a Robin problem with a large parameter in a planar domain Nanosyst. Phys. Chem. Math. 4 474-483
[10]  
Levitin M.(2014)Asymptotic eigenvalue estimates for a Robin problem with a large parameter Port. Math. 71 141-156