An alternative single parameter functional form for Lorenz curve

被引:0
作者
Satya Paul
Sriram Shankar
机构
[1] Amrita University,Centre for Social Research and Methods, The Australian National University, Canberra, Australia & Center for Economics and Governance
[2] The Australian National University,Centre for Social Research and Methods & Research School of Economics
来源
Empirical Economics | 2020年 / 59卷
关键词
Gini coefficient; Lorenz curve; Parametric functional form; C80; D31;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a single parameter functional form for the Lorenz curve and compares its performance with the existing single parameter functional forms using Australian income data for 10 years. The proposed parametric functional form performs better than the existing Lorenz functional specifications based on mean-squared error and information accuracy measure. The Gini based on the proposed functional form turns out to be second best closely behind Aggarwal’s Lorenz curve specification in each year.
引用
收藏
页码:1393 / 1402
页数:9
相关论文
共 63 条
  • [1] Aggarwal V(1984)On optimum aggregation of income distribution data Sankhya B 46 343-355
  • [2] Atkinson AB(1970)On the measurement of inequality J Econ Theory 2 244-263
  • [3] Basmann RL(1990)A general functional form for approximating the Lorenz curve J Econom 92 727-744
  • [4] Hayes K(1993)A comparison of alternative functional forms for the Lorenz curve Econ Lett 41 21-29
  • [5] Slottje D(2002)Estimating Lorenz curves using a dirichlet distribution J Bus Econ Stat 20 290-295
  • [6] Johnson J(1976)The interpolation of the Lorenz curve and Gini index from grouped data Econometrica 44 479-483
  • [7] Chotikapanich D(2004)Calculating a standard error for the Gini coefficient: some further results Oxford Bull Econ Stat 66 425-433
  • [8] Chotikapanich D(2016)A family of arctan Lorenz curves Empir Econ 51 1215-1233
  • [9] Griffiths WE(1984)Functional form for estimating the Lorenz curve Econometrica 52 1313-1314
  • [10] Gastwirth JL(2010)Fitting Lorenz curves Econ Lett 108 153-155