Credit risk classification: an integrated predictive accuracy algorithm using artificial and deep neural networks

被引:0
|
作者
Mohammad Mahbobi
Salman Kimiagari
Marriappan Vasudevan
机构
[1] Thompson Rivers University,Department of Economics
[2] Thompson Rivers University,Department of Management, International Business, Information and Supply Chain
[3] Thompson Rivers University,undefined
来源
Annals of Operations Research | 2023年 / 330卷
关键词
Machine learning; Classifications; Finance; Credit risk; Sampling techniques; Deep neural network; Artificial neural network; Support vector machines;
D O I
暂无
中图分类号
学科分类号
摘要
This study utilizes classification models to provide a robust algorithm for imbalanced data where the minority class is of the interest, that is, in the context of default payments. In developing an integrated predictive accuracy algorithm, this study proposes machine learning classifiers and applies DNN, SVM, KNN, and ANN. The proposed algorithm utilizes a 30,000 imbalanced dataset to improve the accuracy of the prediction of default payments by implementing oversampling and undersampling strategies, such as synthetic minority oversampling technique (SMOTE), SVM SMOTE, random undersampling, and ALL-KNN. The results indicate that the SVM under the ALL-KNN sampling technique is able to achieve an accuracy of 98.6%, with the lowest cross entropy loss measurement of 0.028. Through the accurate implementation of the neural networks and neurons used in the proposed algorithm, this paper presents better insights into the functioning of the neural networks when used in conjunction with the resampling techniques. Using the methodology and algorithm presented in this study, credit risk assessments can be more accurately predicted in practical applications where most of the clients are categorized as non-default payments.
引用
收藏
页码:609 / 637
页数:28
相关论文
共 50 条
  • [11] Shoreline predictive modeling using artificial neural networks
    Goncalves, Rodrigo Mikosz
    Coelho, Leandro Dos Santos
    Krueger, Claudia Pereira
    Heck, Bernhard
    BOLETIM DE CIENCIAS GEODESICAS, 2010, 16 (03): : 420 - 444
  • [12] Banking Credit Risk Analysis using Artificial Neural Network
    Maruma, Charles
    Tu, Chunling
    Nawej, Claude
    PROCEEDINGS OF SEVENTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2022, VOL 1, 2023, 447 : 871 - 878
  • [13] Classification of Starling Image Using Artificial Neural Networks
    Rahman, Aviv Yuniar
    PROCEEDINGS OF 2021 INTERNATIONAL CONFERENCE ON SUSTAINABLE INFORMATION ENGINEERING AND TECHNOLOGY, SIET 2021, 2021, : 309 - 314
  • [14] Fault detection and classification using artificial neural networks
    Heo, Seongmin
    Lee, Jay H.
    IFAC PAPERSONLINE, 2018, 51 (18): : 470 - 475
  • [15] Initial Research on Fruit Classification Methods Using Deep Neural Networks
    Nasarzewski, Zbigniew
    Garbat, Piotr
    IMAGE PROCESSING AND COMMUNICATIONS: TECHNIQUES, ALGORITHMS AND APPLICATIONS, 2020, 1062 : 108 - 113
  • [16] Web Phishing Classification Model using Artificial Neural Network and Deep Learning Neural Network
    Hassan, Noor Hazirah
    Fakharudin, Abdul Sahli
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (07) : 535 - 542
  • [17] Image-based Lesion Classification using Deep Neural Networks
    Hermann, Akos
    Vamossy, Zoltan
    IMPROVE: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND VISION ENGINEERING, 2022, : 85 - 90
  • [18] Classification of Encephalographic Signals using Artificial Neural Networks
    Sepulveda, Roberto
    Montiel, Oscar
    Diaz, Gerardo
    Gutierrez, Daniel
    Castillo, Oscar
    COMPUTACION Y SISTEMAS, 2015, 19 (01): : 69 - 88
  • [19] Falls Risk Classification of Older Adults Using Deep Neural Networks and Transfer Learning
    Martinez, Matthew
    De Leon, Phillip L.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (01) : 144 - 150
  • [20] Combining Spiking Neural Networks with Artificial Neural Networks for Enhanced Image Classification
    Muramatsu, Naoya
    Yu, Hai-Tao
    Satoh, Tetsuji
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2023, E106D (02) : 252 - 261