Isolating Blocks for Periodic Orbits

被引:0
作者
M. A. Bertolim
K. A. de Rezende
O. Manzoli Neto
机构
[1] Université de Bourgogne,IMB – UMR 5584 du CNRS
[2] Dijon,Instituto de Ciências Matemáticas e de Computação
[3] France,undefined
[4] Imecc-Unicamp,undefined
[5] Imecc-Unicamp,undefined
[6] Universidade de São Paulo,undefined
来源
Journal of Dynamical and Control Systems | 2007年 / 13卷
关键词
37DB30; 37C27; 37D15; Conley index theory; round handles; periodic orbits; Lyapunov graphs;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we prove that the Lyapunov semi-graphs associated with periodic orbits are realizable by constructing isolating blocks N n for periodic orbits of Morse–Smale flows. We analyze the effects on the Betti numbers of a manifold after performing a round handle operation and considering a variety of situations. Since we are concerned in showing the existence of certain blocks, we keep the complexity of the manifolds in consideration under control by considering mainly manifolds with free homology groups, in particular, we consider connected sums of tori manifolds.
引用
收藏
页码:121 / 134
页数:13
相关论文
共 8 条
[1]  
Asimov D.(1975)Round handles and non-singular Morse–Smale flows Ann. Math. 102 41-54
[2]  
Bertolim M. A.(2003)Lyapunov graph continuation Ergodic Theory Dynam. Systems 23 1-58
[3]  
Mello M. P.(1999)Gradient-like flows on high-dimensional manifolds Ergodic Theory Dynam. Systems 19 339-362
[4]  
de Rezende K. A.(1987)Smale flows on the three-sphere Trans. Amer. Math. Soc. 303 283-310
[5]  
Cruz R. N.(1985)Nonsingular Smale flows on Topology 24 265-282
[6]  
de Rezende K. A.(undefined)undefined undefined undefined undefined-undefined
[7]  
de Rezende K. A.(undefined)undefined undefined undefined undefined-undefined
[8]  
Franks J.(undefined)undefined undefined undefined undefined-undefined