An Approximation Method in the Variational Theory of the Spectrum of Operator Pencils

被引:0
作者
M. Hasanov
机构
[1] Istanbul Technical University,Department of Mathematics
来源
Acta Applicandae Mathematica | 2002年 / 71卷
关键词
approximation; Rayleigh system; variational principles;
D O I
暂无
中图分类号
学科分类号
摘要
An approximation method, based on a theorem on approximating general operator-valued functions by piecewise-linear ones, is presented and analyzed. Using this method, variational characteristics of the spectrum of a class of operator functions are established.
引用
收藏
页码:117 / 126
页数:9
相关论文
共 14 条
[1]  
Binding P. A.(1991)Variational principles without definiteness conditions SIAM J. Math. Anal. 22 1575-1583
[2]  
Ye Q.(1994)Approximation and variational characteristics of the spectrum of nonsmooth Rayleigh systems J. Math. Sci. 72 3385-3394
[3]  
Hasanov F. G.(1997)On a nonlinear eigenvalue problem Integral Equations Operator Theory 29 491-500
[4]  
Hasanov B.(1992)On the variational theory of the spectrum of operator pencils Dokl. Akad. Nauk 325 915-918
[5]  
Maksudov Q.(1991)A minimax characterization for eigenvalues of Hermitian pencils, I, II Linear Algebra Appl. 144 217-230
[6]  
Hasanov L.(1970)On local solvability of linear partial differential equations-I, II Comm. Pure Appl. Math. 23 1-38
[7]  
Najman F.(1968)Variational properties of nonlinear spectra J. Math. Mech. 18 479-490
[8]  
Ye E. H.(1967)An inequality for eigenvalues of self-adjoint operators Bull. Amer. Math. Soc. 73 487-489
[9]  
Nirenberg W.(1967)Some variational principles for a nonlinear eigenvalue problem J. Math. Anal. Appl. 17 151-165
[10]  
Treves R.(1968)A class of nonlinear eigenvalue problems J. Funct. Anal. 2 297-322