Convolution of convex valuations

被引:0
作者
Andreas Bernig
Joseph H. G. Fu
机构
[1] University of Fribourg,Département de Mathématiques
[2] University of Georgia,Department of Mathematics
来源
Geometriae Dedicata | 2006年 / 123卷
关键词
Valuation; Kinematic formula; Convolution; Minkowski sum; Alesker product; 53C65; 52A22;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the natural “convolution” on the space of smooth, even, translation-invariant convex valuations on a euclidean space V, obtained by intertwining the product and the duality transform of S. Alesker J. Differential Geom. 63: 63–95, 2003; Geom.Funct. Anal. 14:1–26, 2004 may be expressed in terms of Minkowski sum. Furthermore the resulting product extends naturally to odd valuations as well. Based on this technical result we give an application to integral geometry, generalizing Hadwiger’s additive kinematic formula for SO(V) Convex Geometry, North Holland, 1993 to general compact groups \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \subset O(V)$$\end{document} acting transitively on the sphere: it turns out that these formulas are in a natural sense dual to the usual (intersection) kinematic formulas.
引用
收藏
页码:153 / 169
页数:16
相关论文
共 8 条
[1]  
Alesker S.(2001)Description of translation invariant valuations on convex sets with solution of P. McMullen’s conjecture Geom. Func. Anal. 11 244-272
[2]  
Alesker S.(2003)Hard Lefschetz theorem for valuations, complex integral geometry, and unitarily invariant valuations J. Differential Geom. 63 63-95
[3]  
Alesker S.(2004)The multiplicative structure on polynomial valuations Geom. Funct. Anal. 14 1-26
[4]  
Alesker S.(2006)Theory of valuations on manifolds II Adv. Math. 207 420-454
[5]  
Fu J.H.G.(2006)Structure of the unitary valuation algebra J. Differential Geom. 72 509-533
[6]  
Klain D.(2000)Even valuations on convex bodies Trans. Amer. Math. Soc. 352 71-93
[7]  
McMullen P.(1977)Valuations and Euler-type relations on certain classes of convex polytopes Proc. London Math. Soc. 35 113-135
[8]  
Zähle M.(1986)Integral and current representation of Federer’s curvature measures Arch. Math. 46 557-567