Phenol biodegradation by the thermoacidophilic archaeon Sulfolobus solfataricus 98/2 in a fed-batch bioreactor

被引:0
|
作者
Pierre Christen
Sylvain Davidson
Yannick Combet-Blanc
Richard Auria
机构
[1] Université de Provence,Laboratoire de Microbiologie et Biotechnologie des Environnements Chauds, UMR 180, Institut de Recherche pour le Développement
[2] ESIL,undefined
[3] Case 925,undefined
来源
Biodegradation | 2011年 / 22卷
关键词
Phenol; Kinetics; Biodegradation; Yields;
D O I
暂无
中图分类号
学科分类号
摘要
Toxic at low concentrations, phenol is one of the most common organic pollutants in air and water. In this work, phenol biodegradation was studied in extreme conditions (80°C, pH = 3.2) in a 2.7 l bioreactor with the thermoacidophilic archaeon Sulfolobus solfataricus 98/2. The strain was first acclimatized to phenol on a mixture of glucose (2000 mg l−1) and phenol (94 mg l−1) at a constant dissolved oxygen concentration of 1.5 mg l−1. After a short lag-phase, only glucose was consumed. Phenol degradation then began while glucose was still present in the reactor. When glucose was exhausted, phenol was used for respiration and then for biomass build-up. After several batch runs (phenol < 365 mg l−1), specific growth rate (μX) was 0.034 ± 0.001 h−1, specific phenol degradation rate (qP) was 57.5 ± 2 mg g−1 h−1, biomass yield (YX/P) was 52.2 ± 1.1 g mol−1, and oxygen yield factor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left( {{\text{Y}}_{{{\text{X}}/{\text{O}}_{ 2} }} } \right) $$\end{document} was 9.2 ± 0.2 g mol−1. A carbon recovery close to 100% suggested that phenol was exclusively transformed into biomass (35%) and CO2 (65%). Molar phenol oxidation constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left( {{\text{Y}}_{{{\text{O}}_{ 2} /{\text{P}}}} } \right) $$\end{document} was calculated from stoichiometry of phenol oxidation and introducing experimental biomass and CO2 conversion yields on phenol, leading to values varying between 4.78 and 5.22 mol mol−1. Respiratory quotient was about 0.84 mol mol−1, very close to theoretical value (0.87 mol mol−1). Carbon dioxide production, oxygen demand and redox potential, monitored on-line, were good indicators of growth, substrate consumption and exhaustion, and can therefore be usefully employed for industrial phenol bioremediation in extreme environments.
引用
收藏
页码:475 / 484
页数:9
相关论文
共 50 条
  • [1] Phenol biodegradation by the thermoacidophilic archaeon Sulfolobus solfataricus 98/2 in a fed-batch bioreactor
    Christen, Pierre
    Davidson, Sylvain
    Combet-Blanc, Yannick
    Auria, Richard
    BIODEGRADATION, 2011, 22 (03) : 475 - 484
  • [2] Kinetics of aerobic phenol biodegradation by the acidophilic and hyperthermophilic archaeon Sulfolobus solfataricus 98/2
    Christen, Pierre
    Vega, Armando
    Casalot, Laurence
    Simon, Gwenola
    Auria, Richard
    BIOCHEMICAL ENGINEERING JOURNAL, 2012, 62 : 56 - 61
  • [3] “Hot standards” for the thermoacidophilic archaeon Sulfolobus solfataricus
    Melanie Zaparty
    Dominik Esser
    Susanne Gertig
    Patrick Haferkamp
    Theresa Kouril
    Andrea Manica
    Trong K. Pham
    Julia Reimann
    Kerstin Schreiber
    Pawel Sierocinski
    Daniela Teichmann
    Marleen van Wolferen
    Mathias von Jan
    Patricia Wieloch
    Sonja V. Albers
    Arnold J. M. Driessen
    Hans-Peter Klenk
    Christa Schleper
    Dietmar Schomburg
    John van der Oost
    Phillip C. Wright
    Bettina Siebers
    Extremophiles, 2010, 14 : 119 - 142
  • [4] "Hot standards" for the thermoacidophilic archaeon Sulfolobus solfataricus
    Zaparty, Melanie
    Esser, Dominik
    Gertig, Susanne
    Haferkamp, Patrick
    Kouril, Theresa
    Manica, Andrea
    Pham, Trong K.
    Reimann, Julia
    Schreiber, Kerstin
    Sierocinski, Pawel
    Teichmann, Daniela
    van Wolferen, Marleen
    von Jan, Mathias
    Wieloch, Patricia
    Albers, Sonja V.
    Driessen, Arnold J. M.
    Klenk, Hans-Peter
    Schleper, Christa
    Schomburg, Dietmar
    van der Oost, John
    Wright, Phillip C.
    Siebers, Bettina
    EXTREMOPHILES, 2010, 14 (01) : 119 - 142
  • [5] Comparative analysis of the catechol 2,3-dioxygenase gene locus in thermoacidophilic archaeon Sulfolobus solfataricus strain 98/2
    Chae, Jong-Chan
    Kim, Eungbin
    Bini, Elisabetta
    Zystra, Gerben J.
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2007, 357 (03) : 815 - 819
  • [6] Analysis of ATPases of putative secretion operons in the thermoacidophilic archaeon Sulfolobus solfataricus
    Albers, SV
    Driessen, AJM
    MICROBIOLOGY-SGM, 2005, 151 : 763 - 773
  • [7] ADP-RIBOSYLATION REACTIONS IN SULFOLOBUS-SOLFATARICUS, A THERMOACIDOPHILIC ARCHAEON
    FARAONEMENNELLA, MR
    DELUCIA, F
    DEMAIO, A
    GAMBACORTA, A
    QUESADA, P
    DEROSA, M
    NICOLAUS, B
    FARINA, B
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEIN STRUCTURE AND MOLECULAR ENZYMOLOGY, 1995, 1246 (02): : 151 - 159
  • [8] The thermophilic archaeon Sulfolobus solfataricus is able to grow on phenol
    Izzo, V
    Notomista, E
    Picardi, A
    Pennacchio, F
    Di Donato, A
    RESEARCH IN MICROBIOLOGY, 2005, 156 (5-6) : 677 - 689
  • [9] Fusion-type lycopene β-cyclase from a thermoacidophilic archaeon Sulfolobus solfataricus
    Hemmi, H
    Ikejiri, S
    Nakayama, T
    Nishino, T
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2003, 305 (03) : 586 - 591
  • [10] The ATPases CopA and CopB both contribute to copper resistance of the thermoacidophilic archaeon Sulfolobus solfataricus
    Voellmecke, Christian
    Drees, Steffen L.
    Reimann, Julia
    Albers, Sonja-Verena
    Luebben, Mathias
    MICROBIOLOGY-SGM, 2012, 158 : 1622 - 1633