Projected subgradient methods with non-Euclidean distances for non-differentiable convex minimization and variational inequalities

被引:0
|
作者
Alfred Auslender
Marc Teboulle
机构
[1] University of Lyon I,Institut Camille Jordan
[2] Tel-Aviv University,School of Mathematical Sciences
来源
Mathematical Programming | 2009年 / 120卷
关键词
Non-differentiable convex optimization; Variational inequalities; Ergodic convergence; Subgradient methods; Interior projection-like maps; 90C25; 90C33; 65K05;
D O I
暂无
中图分类号
学科分类号
摘要
We study subgradient projection type methods for solving non-differentiable convex minimization problems and monotone variational inequalities. The methods can be viewed as a natural extension of subgradient projection type algorithms, and are based on using non-Euclidean projection-like maps, which generate interior trajectories. The resulting algorithms are easy to implement and rely on a single projection per iteration. We prove several convergence results and establish rate of convergence estimates under various and mild assumptions on the problem’s data and the corresponding step-sizes.
引用
收藏
页码:27 / 48
页数:21
相关论文
共 50 条
  • [41] DUALITY THEOREMS AND AN OPTIMALITY CONDITION FOR NON-DIFFERENTIABLE CONVEX-PROGRAMMING
    KANNIAPPAN, P
    SASTRY, SMA
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1982, 32 (JUN): : 369 - 379
  • [42] Projected viscosity subgradient methods for variational inequalities with equilibrium problem constraints in Hilbert spaces
    Phan Tu Vuong
    Jean Jacques Strodiot
    Van Hien Nguyen
    Journal of Global Optimization, 2014, 59 : 173 - 190
  • [43] Non-Euclidean motion planning with graphs of geodesically convex sets
    Cohn, Thomas
    Petersen, Mark
    Simchowitz, Max
    Tedrake, Russ
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2024,
  • [44] On Steiner’s Symmetrization of Convex Bodies in Non-Euclidean Geometry
    Kurt Leichtweiss
    Results in Mathematics, 2008, 52 : 339 - 346
  • [45] PROJECTED DYNAMICAL SYSTEMS ON IRREGULAR, NON-EUCLIDEAN DOMAINS FOR NONLINEAR OPTIMIZATION
    Hauswirth, Adrian
    Bolognani, Saverio
    Dorfler, Florian
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (01) : 635 - 668
  • [46] Extending the SOM algorithm to non-Euclidean distances via the kernel trick
    Martín-Merino, M
    Muñoz, A
    NEURAL INFORMATION PROCESSING, 2004, 3316 : 150 - 157
  • [47] Kriging models for linear networks and non-Euclidean distances: Cautions and solutions
    Ver Hoef, Jay M.
    METHODS IN ECOLOGY AND EVOLUTION, 2018, 9 (06): : 1600 - 1613
  • [48] Kriging in the Presence of Locally Varying Anisotropy Using Non-Euclidean Distances
    J. B. Boisvert
    J. G. Manchuk
    C. V. Deutsch
    Mathematical Geosciences, 2009, 41 : 585 - 601
  • [49] Kriging in the Presence of Locally Varying Anisotropy Using Non-Euclidean Distances
    Boisvert, J. B.
    Manchuk, J. G.
    Deutsch, C. V.
    MATHEMATICAL GEOSCIENCES, 2009, 41 (05) : 585 - 601
  • [50] Non-parametric Smoothing for Gradient Methods in Non-differentiable Optimization Problems
    Chakraborty, Arindam
    Roy, Arunjyoti Sinha
    Dasgupta, Bhaskar
    2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 3759 - 3764