Homoclinic solutions for second-order Hamiltonian systems with periodic potential

被引:0
作者
Yiwei Ye
机构
[1] Chongqing Normal University,School of Mathematical Sciences
来源
Boundary Value Problems | / 2018卷
关键词
Homoclinic solution; Ground state; Variational methods; Vanishing; Nonvanishing; 37J45; 58E05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the second-order Hamiltonian systems u¨−L(t)u+∇W(t,u)=0,t∈R,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \ddot{u}-L(t)u+\nabla W(t,u)=0,\quad t\in \mathbb{R}, $$\end{document} where L∈C(R,RN×N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L\in C(\mathbb{R},\mathbb{R}^{N\times N})$\end{document} is a T-periodic and positive definite matrix for all t∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\in \mathbb{R}$\end{document} and W is superquadratic but does not satisfy the usual Ambrosetti–Rabinowitz condition at infinity. One ground homoclinic solution is obtained by applying the monotonicity trick of Jeanjean and the concentration–compactness principle. The main result improves the recent result of Liu–Guo–Zhang (Nonlinear Anal., Real World Appl. 36:116–138, 2017).
引用
收藏
相关论文
共 43 条
[1]  
Ambrosetti A.(1973)Dual variational methods in critical point theory and applications J. Funct. Anal. 14 349-381
[2]  
Rabinowitz P.(1991)Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials J. Am. Math. Soc. 4 693-727
[3]  
Coti-Zelati V.(1995)Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems Nonlinear Anal. 25 1095-1113
[4]  
Rabinowitz P.(2007)Homoclinic orbits for a nonperiodic Hamiltonian system J. Differ. Equ. 237 473-490
[5]  
Ding Y.(2009)Homoclinics for asymptotically quadratic and superquadratic Hamiltonian systems Nonlinear Anal. 71 1395-1413
[6]  
Ding Y.(1990)First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems Math. Ann. 288 483-503
[7]  
Jeanjean L.(2005)Homoclinic solutions for a class of the second order Hamiltonian systems J. Differ. Equ. 219 375-389
[8]  
Ding Y.(1999)On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on Proc. R. Soc. Edinb. A 129 787-809
[9]  
Lee C.(1984)The concentration–compactness principle in the calculus of variations. The locally compact cases, Part II Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1 223-283
[10]  
Hofer H.(2003)Infinitely many solutions for a superlinear elliptic equation Acta Math. Sinica (Chin. Ser.) 46 625-630