On base radical and semisimple classes defined by class operators

被引:0
|
作者
N. R. McConnell
R. G. McDougall
T. Stokes
机构
[1] Department of Defence,School of Information and Communication Technologies
[2] Central Queensland University,Department of Mathematics
[3] University of Waikato,undefined
来源
Acta Mathematica Hungarica | 2013年 / 138卷
关键词
radical class; semisimple class; base radical; 16N80; 17A65; 08A05; 08C99;
D O I
暂无
中图分类号
学科分类号
摘要
By using class operators, we define base radical and semisimple classes, within a broad abstract setting due to Puczylowski. The new notions agree with the usual Kurosh–Amitsur ones for associative rings and groups but differ for not necessarily associative rings, in general lying strictly between the Kurosh–Amitsur and torsion theory notions. A study of the class operators for their own sake is initiated, and a connection with modal logic is made.
引用
收藏
页码:307 / 328
页数:21
相关论文
共 23 条
  • [1] On base radical and semisimple classes defined by class operators
    McConnell, N. R.
    McDougall, R. G.
    Stokes, T.
    ACTA MATHEMATICA HUNGARICA, 2013, 138 (04) : 307 - 328
  • [2] Erratum to: On base radical and semisimple classes defined by class operators
    N. R. Mcconnell
    R. G. Mcdougall
    T. Stokes
    Acta Mathematica Hungarica, 2014, 144 : 266 - 268
  • [3] ON BASE RADICAL AND SEMISIMPLE CLASSES DEFINED BY CLASS OPERATORS (vol 138, pg 307, 2013)
    McConnell, N. R.
    McDougall, R. G.
    Stokes, T.
    ACTA MATHEMATICA HUNGARICA, 2014, 144 (01) : 266 - 268
  • [4] On base radical and semisimple operators for a class of finite algebras
    Thornton L.K.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2018, 59 (2): : 361 - 374
  • [5] ON BASE RADICAL OPERATORS FOR CLASSES OF FINITE ASSOCIATIVE RINGS
    McDougall, R. G.
    Thornton, L. K.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 98 (02) : 239 - 250
  • [6] Semisimple classes of semirings
    Hebisch, U
    Weinert, HJ
    ALGEBRA COLLOQUIUM, 2002, 9 (02) : 177 - 196
  • [7] A comparison of Kurosh–Amitsur and base radical classes
    R. G. McDougall
    L. K. Thornton
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2021, 62 : 871 - 882
  • [8] A comparison of Kurosh-Amitsur and base radical classes
    McDougall, R. G.
    Thornton, L. K.
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2021, 62 (04): : 871 - 882
  • [9] ELEMENTARY RADICAL CLASSES
    Gardner, B. J.
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2018, 23 : 25 - 41
  • [10] K-radical classes and product radical classes of MV-algebras
    Jakubik, Jan
    MATHEMATICA SLOVACA, 2008, 58 (02) : 143 - 154