On closedness of law-invariant convex sets in rearrangement invariant spaces

被引:0
作者
Made Tantrawan
Denny H. Leung
机构
[1] National University of Singapore,Department of Mathematics
[2] Universitas Gadjah Mada,Department of Mathematics Faculty of Mathematics and Natural Sciences
来源
Archiv der Mathematik | 2020年 / 114卷
关键词
Convex sets; Law-invariant; Rearrangement invariant spaces; Fatou property; 46A55; 46E30; 46A20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents relations between several types of closedness of a law-invariant convex set in a rearrangement invariant space X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {X}}$$\end{document}. In particular, we show that order closedness, σ(X,Xn∼)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ({\mathcal {X}},{\mathcal {X}}_n^\sim )$$\end{document}-closedness, and σ(X,L∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ({\mathcal {X}},L^\infty )$$\end{document}-closedness of a law-invariant convex set in X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {X}}$$\end{document} are equivalent, where Xn∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {X}}_n^\sim $$\end{document} is the order continuous dual of X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {X}}$$\end{document}. We also provide some application to proper quasiconvex law-invariant functionals with the Fatou property.
引用
收藏
页码:175 / 183
页数:8
相关论文
共 20 条
[1]  
Chen S(2018)The strong Fatou property of risk measures Depend. Model. 6 183-196
[2]  
Gao N(2018)Fatou property, representation, and extension of law-invariant risk measures on general Orlicz spaces Finance Stoch. 22 395-415
[3]  
Xanthos F(2019)Closedness of convex sets in Orlicz spaces with applications to dual representation of risk measures Studia Math. 249 329-347
[4]  
Gao N(2018)Duality for unbounded order convergence and applications Positivity 22 711-725
[5]  
Leung D(2018)On the C-property and Math. Finance 28 748-754
[6]  
Munari C(2006)-representations of risk measures Adv. Math. Econ. 9 49-71
[7]  
Xanthos F(2014)Law invariant risk measures have the Fatou property J. Func. Anal. 266 3572-3611
[8]  
Gao N(2010)Maximum Lebesgue extension of monotone convex functions Math. Finance Econ. 3 39-43
[9]  
Leung D(undefined)Continuity properties of law-invariant (quasi-)convex risk functions on undefined undefined undefined-undefined
[10]  
Xanthos F(undefined)undefined undefined undefined undefined-undefined