A note on complex plane curve singularities up to diffeomorphism and their rigidity

被引:0
|
作者
Fernandez-Hernandez, A. [1 ]
Conejero, R. Gimenez [2 ]
机构
[1] Univ Valencia, Dept Matemat, Campus Burjassot, Burjassot 46100, Spain
[2] Alfred Reny Inst Math, Realtanoda utca 13-15, H-1053 Budapest, Hungary
关键词
Classification of complex singularities; Diffeomorphisms; Smooth equivalence; ANALYTIC CLASSIFICATION; EQUIVALENCE; MILNOR; MODULI;
D O I
10.1007/s40687-024-00439-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if two germs of plane curves (C, 0) and ( C ' , 0 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(C',0)$$\end{document} with at least one singular branch are equivalent by a (real) smooth diffeomorphism, then C is complex isomorphic to C ' \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C'$$\end{document} or to C ' over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{C'}$$\end{document} . A similar result was shown by Ephraim for irreducible hypersurfaces before, but his proof is not constructive. Indeed, we show that the complex isomorphism is given by the Taylor series of the diffeomorphism. We also prove an analogous result for the case of non-irreducible hypersurfaces containing an irreducible component that is non-factorable. Moreover, we provide a general overview of the different classifications of plane curve singularities.
引用
收藏
页数:21
相关论文
共 50 条