Gaussian decompositions in function spaces

被引:0
作者
Triebel H. [1 ]
机构
[1] Mathematisches Institut, Universität Jena, Jena
关键词
atomic decompositions; Function spaces; wavelets;
D O I
10.1007/BF03322048
中图分类号
学科分类号
摘要
We introduce Gausslets[InlineMediaObject not available: see fulltext.], where P(x) are distinguished polynomials in ℝn. Combined with dilations x↦2vx, where v∈N0, and translations x↦x+m, where m ∈ ℤn, one obtains frames in the function spaces Bpq s(ℝn) and Fpq s(ℝn) for all possible parameters s, p, and q. © 1998, Birkhäuser Verlag, Basel.
引用
收藏
页码:174 / 184
页数:10
相关论文
共 20 条
  • [1] Daubechies I., The wavelet transform, time — frequency localizations and signal analysis, IEEE Trans. Inform. Theory, 36, pp. 961-1005, (1990)
  • [2] Daubechies I., Ten lectures on wavelets, CBMS — NSF Regional Conf. Series in Appl. Math. 61, (1992)
  • [3] Dintelmann P., Classes of Fourier multipliers and Besov — Nikolskij spaces, Math. Nachr., 173, pp. 115-130, (1995)
  • [4] Edmunds E.D., Triebel H., Function spaces, entropy numbers, differential operators, (1996)
  • [5] Farkas W., Atomic and subatomic decompositions in anisotropic function spaces, Math. Nachr.
  • [6] Feichtinger H.G., Grochenig K.H., Banach spaces related to integrable group representations and their atomic decompositions, I, J. Funct. Anal., 86, pp. 307-340, (1989)
  • [7] Frazier M., Jawerth B., Decomposition of Besov spaces, Indiana Univ. Math. J., 34, pp. 777-799, (1985)
  • [8] Frazier M., Jawerth B., A discrete transform and decomposition of distribution spaces, J. Funct. Anal., 93, pp. 37-170, (1990)
  • [9] Frazier M., Jawerth B., Weiss G., Littlewood — Paley theory and the study of function spaces, CBMS — AMS Regional Conf. Ser., 79, (1991)
  • [10] Grochenig K.H., Describing functions: Atomic decompositions versus frames, Monatshefte Math., 112, pp. 1-41, (1991)