In this paper, we obtain some Hecke-type triple sums for the third-order mock theta function ω(q)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\omega (q)$$\end{document} and the fifth-order mock theta functions χ0(q)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\chi _0(q)$$\end{document}, χ1(q)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\chi _1(q)$$\end{document}. In addition, we extend this topic to the generating function of S∗(n)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S^{*}(n)$$\end{document} due to Andrews, Dyson, and Hickerson by investigating its new alternative representation.
机构:
Qinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
Acad Plateau Sci & Sustainabil, Xining 810008, Qinghai, Peoples R ChinaQinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
Cui, Su-Ping
Gu, Nancy S. S.
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Ctr Combinator, LPMC, Tianjin 300071, Peoples R ChinaQinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
Gu, Nancy S. S.
Su, Chen-Yang
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Normal Univ, Coll Math Sci, Tianjin 300387, Peoples R ChinaQinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China