A non-linear approximation method on the sphere

被引:9
作者
Michel V. [1 ]
Telschow R. [1 ]
机构
[1] Geomathematics Group, Department of Mathematics, University of Siegen, Emmy-Noether-Campus, Walter-Flex-Str. 3, Siegen
关键词
Greedy algorithm; Matching pursuit; Multiresolution analysis; Non-linear approximation; Regularization; Reproducing kernel; Scaling function; Scattered data; Sphere; Spherical harmonic; Wavelet;
D O I
10.1007/s13137-014-0063-3
中图分类号
学科分类号
摘要
We show the applicability of a modified version of the recently developed Regularized Functional Matching Pursuit (RFMP) to the approximation of functions on the sphere from grid-based data. We elaborate the mathematical details of the choice of trial functions and the specifics of the algorithm. Moreover, we show numerical examples for some benchmarks. The dictionary of trial functions contains orthogonal polynomials (spherical harmonics) as well as spherical scaling functions and wavelets. It turns out that the greedy algorithm RFMP yields sparse approximations by combining different types of trial functions in a (particular) optimal way, where the sparsity can essentially be increased by a-priori choosing the dictionary appropriately. Moreover, the result of the RFMP can be used for a multiresolution analysis of the investigated function. © 2014, Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:195 / 224
页数:29
相关论文
共 48 条
  • [1] Antoine J.P., Demanet L., Jacques L., Vandergheynst P., Wavelets on the sphere: implementations and approximations, Appl. Comput. Harmon. Anal., 13, pp. 177-200, (2002)
  • [2] Antoine J.P., Vandergheynst P., Wavelets on the 2-sphere: a group theoretic approach, Appl. Comput. Harmon. Anal., 7, pp. 1-30, (1999)
  • [3] Berkel P., Fischer D., Michel V., Spline multiresolution and numerical results for joint gravitation and normal mode inversion with an outlook on sparse regularisation, Int. J. Geomath., 1, pp. 167-204, (2011)
  • [4] Brauchart J.S., Dick J., A characterization of Sobolev spaces on the sphere and an extension of Stolarsky’s invariance principle to arbitrary smoothness, Constr. Approx., 38, pp. 397-445, (2013)
  • [5] Brauchart J.S., Hesse K., Numerical integration over spheres of arbitrary dimension, Constr. Approx., 25, pp. 41-71, (2007)
  • [6] Chambodut A., Panet I., Mandea M., Diament M., Holschneider M., Jamet O., Wavelet frames: an alternative to spherical harmonic representation of potential fields, Geophys. J. Int., 163, pp. 875-899, (2005)
  • [7] Dahlen F.A., Simons F.J., Spectral estimation on a sphere in geophysics and cosmology, Geophys. J. Int., 174, pp. 774-807, (2008)
  • [8] Davis P., Interpolation and Approximation, (1963)
  • [9] Fischer D., Sparse regularization of a joint inversion of gravitational data and normal mode anomalies. PhD Thesis, Geomathematics Group, Department of Mathematics, University of Siegen. Verlag Dr. Hut, Munich, (2011)
  • [10] Fischer D., Michel V., Sparse regularization of inverse gravimetry—case study: spatial and temporal mass variations in South America, Inverse Probl, 65012, 34 pp, (2012)