An Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} Multiplicative Coboundary Theorem for Sequences of Unitriangular Random Matrices

被引:0
|
作者
Steven T. Morrow
机构
[1] Wentworth Institute of Technology,
关键词
Random matrices; -norm; Coboundary; Unitriangular; 60B20; 60G99;
D O I
10.1007/s10959-019-00981-2
中图分类号
学科分类号
摘要
Bradley (J Theor Probab 9(3):659–678, 1996. https://doi.org/10.1007/BF02214081) proved a “multiplicative coboundary” theorem for sequences of unitriangular random matrices with integer entries, requiring tightness of the family of distributions of the entries from the partial matrix products of the sequence. This was an analog of Schmidt’s (Cocycles on ergodic transformation groups. Macmillan lectures in mathematics, vol 1. Macmillan Company of India, Ltd., Delhi, 1977) result for sequences of real-valued random variables with tightness of the family of partial sums. Here is an Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} moment analog of Bradley’s result which also relaxes the restriction of entries being integers.
引用
收藏
页码:206 / 213
页数:7
相关论文
共 50 条