Topological Subgraphs in Graphs of Large Girth

被引:0
作者
W. Mader
机构
[1] Institut für Mathematik,
[2] Universität Hannover; D 30167 Hannover,undefined
[3] Germany; E-mail: mader@math.uni-hannover.de,undefined
来源
Combinatorica | 1998年 / 18卷
关键词
AMS Subject Classification (1991) Classes:  05C35;
D O I
暂无
中图分类号
学科分类号
摘要
of maximum degree \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, there is an integer g(H) such that every finite graph of minimum degree n and girth at least g(H) contains a subdivision of H. This had been conjectured for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} in [8]. We prove also that every finite 2n-connected graph of sufficiently large girth is n-linked, and this is best possible for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}.
引用
收藏
页码:405 / 412
页数:7
相关论文
empty
未找到相关数据