Some properties of anisotropic Sobolev spaces

被引:0
作者
P. Secchi
机构
[1] Dipartimento di Matematica,
[2] Ingegneria,undefined
[3] Università di Brescia,undefined
[4] Via Valotti 9,undefined
[5] 25133 Brescia,undefined
[6] Italy,undefined
来源
Archiv der Mathematik | 2000年 / 75卷
关键词
Boundary Condition; Sobolev Space; Function Space; Hyperbolic System; Wall Boundary;
D O I
暂无
中图分类号
学科分类号
摘要
In the theory of mixed problems for symmetric hyperbolic systems under characteristic boundary conditions, and in particular the equations of ideal Magneto-hydrodynamics with perfectly conducting wall boundary condition, the natural functional setting is provided by the anisotropic Sobolev spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $H^m_\ast (\Omega ),\; H^m_{\ast \ast }(\Omega )$\end{document}. In the present paper we show some properties of such function spaces which provide basic tools for calculations.
引用
收藏
页码:207 / 216
页数:9
相关论文
共 50 条
  • [31] Isometries between Sobolev spaces
    Biegert, Markus
    Nittka, Robin
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (17-18) : 2059 - 2077
  • [32] Bases in Sobolev weight spaces
    Demenko, VN
    MATHEMATICAL NOTES, 2000, 67 (3-4) : 286 - 295
  • [33] Bases in Sobolev weight spaces
    V. N. Demenko
    Mathematical Notes, 2000, 67 : 286 - 295
  • [34] On one generalization of Sobolev spaces
    A. S. Romanov
    Siberian Mathematical Journal, 1998, 39 : 821 - 824
  • [35] Sampling inequalities in Sobolev spaces
    Arcangeli, Remi
    Jose Torrens, Juan
    JOURNAL OF APPROXIMATION THEORY, 2014, 182 : 18 - 28
  • [36] Topological properties of some function spaces
    Gabriyelyan, Saak
    Osipov, Alexander, V
    TOPOLOGY AND ITS APPLICATIONS, 2020, 279
  • [37] A new approach to Sobolev spaces in metric measure spaces
    Sjodin, Tomas
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 142 : 194 - 237
  • [38] VARIABLE EXPONENT SOBOLEV SPACES ON METRIC MEASURE SPACES
    Harjuletho, Petteri
    Hasto, Peter
    Pere, Mikko
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2006, 36 (01) : 79 - 94
  • [39] Some essential properties ofQp(∂Δ)-spaces
    Jie Xiao
    Jie Xiao
    Journal of Fourier Analysis and Applications, 2000, 6 : 311 - 323
  • [40] Morrey-Sobolev Spaces on Metric Measure Spaces
    Yufeng Lu
    Dachun Yang
    Wen Yuan
    Potential Analysis, 2014, 41 : 215 - 243