Non-convex nested Benders decomposition

被引:0
|
作者
Christian Füllner
Steffen Rebennack
机构
[1] Karlsruhe Institute of Technology (KIT),Institute for Operations Research (IOR), Stochastic Optimization (SOP)
来源
Mathematical Programming | 2022年 / 196卷
关键词
Nested Benders decomposition; Mixed-integer nonlinear programming (MINLP); Global optimization; Non-convexities; Non-convex value functions; 90C26; 90C11; 49M27;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a new decomposition method to solve multistage non-convex mixed-integer (stochastic) nonlinear programming problems (MINLPs). We call this algorithm non-convex nested Benders decomposition (NC-NBD). NC-NBD is based on solving dynamically improved mixed-integer linear outer approximations of the MINLP, obtained by piecewise linear relaxations of nonlinear functions. Those MILPs are solved to global optimality using an enhancement of nested Benders decomposition, in which regularization, dynamically refined binary approximations of the state variables and Lagrangian cut techniques are combined to generate Lipschitz continuous non-convex approximations of the value functions. Those approximations are then used to decide whether the approximating MILP has to be dynamically refined and in order to compute feasible solutions for the original MINLP. We prove that NC-NBD converges to an ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-optimal solution in a finite number of steps. We provide promising computational results for some unit commitment problems of moderate size.
引用
收藏
页码:987 / 1024
页数:37
相关论文
共 50 条
  • [21] Convex non-convex image segmentation
    Chan, Raymond
    Lanza, Alessandro
    Morigi, Serena
    Sgallari, Fiorella
    NUMERISCHE MATHEMATIK, 2018, 138 (03) : 635 - 680
  • [22] CONVEX GAMES ON NON-CONVEX SETS
    GERSHANOV, AM
    ENGINEERING CYBERNETICS, 1978, 16 (05): : 14 - 19
  • [23] Coverage Control in Non-Convex Environment Considering Unknown Non-Convex Obstacles
    Parapari, Hamed Fathalizadeh
    Abdollahi, Farzaneh
    Menhaj, Mohammad Bagher
    2014 SECOND RSI/ISM INTERNATIONAL CONFERENCE ON ROBOTICS AND MECHATRONICS (ICROM), 2014, : 119 - 124
  • [24] A non-convex ternary variational decomposition and its application for image denoising
    Tang, Liming
    Wu, Liang
    Fang, Zhuang
    Li, Chunyan
    IET SIGNAL PROCESSING, 2022, 16 (03) : 248 - 266
  • [25] Benders Subproblem Decomposition for Bilevel Problems with Convex Follower
    Byeon, Geunyeong
    Van Hentenryck, Pascal
    INFORMS JOURNAL ON COMPUTING, 2022, 34 (03) : 1749 - 1767
  • [26] Natasha: Faster Non-Convex Stochastic Optimization via Strongly Non-Convex Parameter
    Allen-Zhu, Zeyuan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [27] Control of distribution grids with storage using nested Benders' decomposition
    Giuntoli, Marco
    Subasic, Milos
    Schmitt, Susanne
    ELECTRIC POWER SYSTEMS RESEARCH, 2021, 190
  • [28] Convex Non-Convex Segmentation over Surfaces
    Huska, Martin
    Lanza, Alessandro
    Morigi, Serena
    Sgallari, Fiorella
    SCALE SPACE AND VARIATIONAL METHODS IN COMPUTER VISION, SSVM 2017, 2017, 10302 : 348 - 360
  • [29] Nested benders decomposition for a deterministic biomass feedstock logistics problem
    Singh, Sanchit
    Sarin, Subhash C.
    Sangha, Sandeep Singh
    JOURNAL OF GLOBAL OPTIMIZATION, 2025, 91 (01) : 95 - 127
  • [30] Convex drawings of graphs with non-convex boundary
    Hong, Seok-Hee
    Nagamochi, Hiroshi
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2006, 4271 : 113 - +