Non-convex nested Benders decomposition

被引:0
|
作者
Christian Füllner
Steffen Rebennack
机构
[1] Karlsruhe Institute of Technology (KIT),Institute for Operations Research (IOR), Stochastic Optimization (SOP)
来源
Mathematical Programming | 2022年 / 196卷
关键词
Nested Benders decomposition; Mixed-integer nonlinear programming (MINLP); Global optimization; Non-convexities; Non-convex value functions; 90C26; 90C11; 49M27;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a new decomposition method to solve multistage non-convex mixed-integer (stochastic) nonlinear programming problems (MINLPs). We call this algorithm non-convex nested Benders decomposition (NC-NBD). NC-NBD is based on solving dynamically improved mixed-integer linear outer approximations of the MINLP, obtained by piecewise linear relaxations of nonlinear functions. Those MILPs are solved to global optimality using an enhancement of nested Benders decomposition, in which regularization, dynamically refined binary approximations of the state variables and Lagrangian cut techniques are combined to generate Lipschitz continuous non-convex approximations of the value functions. Those approximations are then used to decide whether the approximating MILP has to be dynamically refined and in order to compute feasible solutions for the original MINLP. We prove that NC-NBD converges to an ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-optimal solution in a finite number of steps. We provide promising computational results for some unit commitment problems of moderate size.
引用
收藏
页码:987 / 1024
页数:37
相关论文
共 50 条