Profinite groups with restricted centralizers of π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}-elements

被引:0
作者
Cristina Acciarri
Pavel Shumyatsky
机构
[1] Università degli Studi di Modena e Reggio Emilia,Dipartimento di Scienze Fisiche, Informatiche e Matematiche
[2] University of Brasilia,Department of Mathematics
关键词
Profinite groups; Centralizers; -elements; FC-groups; 20E18; 20F24;
D O I
10.1007/s00209-021-02955-9
中图分类号
学科分类号
摘要
A group G is said to have restricted centralizers if for each g in G the centralizer CG(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_G(g)$$\end{document} either is finite or has finite index in G. Shalev showed that a profinite group with restricted centralizers is virtually abelian. Given a set of primes π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}, we take interest in profinite groups with restricted centralizers of π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}-elements. It is shown that such a profinite group has an open subgroup of the form P×Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P\times Q$$\end{document}, where P is an abelian pro-π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} subgroup and Q is a pro-π′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi '$$\end{document} subgroup. This significantly strengthens a result from our earlier paper.
引用
收藏
页码:1039 / 1045
页数:6
相关论文
共 13 条
  • [1] Acciarri C(2021)A stronger form of Neumann’s BFC-theorem Isr. J. Math. 242 269-278
  • [2] Shumyatsky P(2020)Profinite groups with restricted centralizers of commutators Proceedings of the Royal Society of Edinburgh, Section A: Mathematics 150 2301-2321
  • [3] Detomi E(2018)Groups with boundedly finite conjugacy classes of commutators Quarterly J. Math. 69 1047-1051
  • [4] Morigi M(1954)Groups covered by permutable subsets J. London Math. Soc. (3) 29 236-248
  • [5] Shumyatsky P(1989)Two combinatorial problems in group theory Bull. Lond. Math. Soc. 21 456-458
  • [6] Dierings G(1995)Finite groups admitting a fixed-point-free automorphism group J. Algebra 174 724-727
  • [7] Shumyatsky P(1994)Profinite groups with restricted centralizers Proc. Amer. Math. Soc. 122 1279-1284
  • [8] Neumann BH(1957)Groups with boundedly finite classes of conjugate elements Proc. Roy. Soc. London Ser. A 238 389-401
  • [9] Neumann PM(1992)On periodic compact groups Israel J. Math. 77 83-95
  • [10] Rowley P(undefined)undefined undefined undefined undefined-undefined