Global dynamics of a tuberculosis model with age-dependent latency and time delays in treatment

被引:0
作者
Zhong-Kai Guo
Hai-Feng Huo
Hong Xiang
Qiu-Yan Ren
机构
[1] Lanzhou Jiaotong University,School of Traffic and Transportation
[2] Lanzhou University of Technology,Department of Applied Mathematics
[3] Lanzhou University of Finance and Economics,School of Information Engineering
来源
Journal of Mathematical Biology | 2023年 / 87卷
关键词
Tuberculosis; Age-dependent; Delay; Global stability; Numerical simulation; 37N25; 92B05; 37B25;
D O I
暂无
中图分类号
学科分类号
摘要
Since there exists heterogeneity in incubation periods of tuberculosis and a time lag between treatment and recovery. In this study, we develop a tuberculosis model that takes into account age-dependent latency and time delays in treatment to describe the transmission of tuberculosis. We first show that the solution semi-flow of the model is well-posed and has a global attractor D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}$$\end{document} within an infinite dimensional space Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. Then we define the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_{0}$$\end{document} and prove that it determines the global dynamics of the model. If R0<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_{0}<1$$\end{document}, the global attractor D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}$$\end{document} reduces to the disease-free equilibrium state, indicating that the disease-free equilibrium state is globally asymptotically stable. When R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_{0}>1$$\end{document}, the semi-flow generated by the model is uniformly persistent, and there exists an interior global attractor D0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}_{0}$$\end{document} for this uniformly persistent model. By constructing a suitable Lyapunov function and applying LaSalle’s Invariance Principle, we show that the global attractor D0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}_{0}$$\end{document} is reduced to the endemic equilibrium state, which means that the endemic equilibrium state is globally asymptotically stable. Based on the tuberculosis data in China from 2007 to 2020, we simulate the parameters and initial values of the proposed model. Furthermore, we calculate the sensitivity of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_{0}$$\end{document} to the parameters and find the most sensitive parameters to R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_{0}$$\end{document}. Finally, we present an improved strategy to achieve the WHO’s goal of reducing the incidence of tuberculosis by 90% by 2035 compared to 2015.
引用
收藏
相关论文
共 106 条
  • [1] Al-Darabsah I(2021)A time-delayed SVEIR model for imperfect vaccine with a generalized nonmonotone incidence and application to measles Appl Math Model 91 74-92
  • [2] Asare P(2021)Genomic epidemiological analysis identifies high relapse among individuals with recurring tuberculosis and provides evidence of recent household-related transmission of tuberculosis in Ghana Int J Infect Dis 106 13-22
  • [3] Osei-Wusu S(2022)Dynamics of an htlv-i infection model with delayed ctls immune response Appl Math Comput 430 1999-2017
  • [4] Baddoo NA(2013)Global analysis of age-structured within-host virus model Discrete Contin Dyn Syst Ser B 18 1061-7
  • [5] Bera S(2009)Relapse associated with active disease caused by Beijing strain of mycobacterium tuberculosis Emerg Infect Dis 15 9-41
  • [6] Khajanchi S(2005)Autonomous and non-autonomous attractors for differential equations with delays J Differ Equ 208 573-600
  • [7] Roy TK(2022)Stability and bifurcations in a general cournot duopoly model with distributed time delays Chaos Solitons Fractals 162 160-169
  • [8] Browne CJ(2006)Asymptotic behavior in nosocomial epidemic models with antibiotic resistance Differ Integral Equ 19 388-395
  • [9] Pilyugin SS(2020)Dynamical analysis of an age-structured tuberculosis mathematical model with ltbi detectivity J Math Anal Appl 492 73-71
  • [10] Burman WJ(2021)Global dynamics of a tuberculosis model with sensitivity of the smear microscopy Chaos Solitons Fractals 146 52-2433