Generic Diffeomorphisms with Superexponential Growth of Number of Periodic Orbits

被引:0
|
作者
Vadim Yu. Kaloshin
机构
[1] Department of Mathematics,
[2] Princeton University,undefined
[3] Princeton,undefined
[4] NJ 08544-1000,undefined
[5] USA.¶E-mail: kaloshin@math.princeton.edu,undefined
来源
Communications in Mathematical Physics | 2000年 / 211卷
关键词
Manifold; Periodic Orbit; Periodic Point; Compact Manifold; Complete Proof;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a smooth compact manifold of dimension at least 2 and Diffr(M) be the space of Cr smooth diffeomorphisms of M. Associate to each diffeomorphism f;isin; Diffr(M) the sequence Pn(f) of the number of isolated periodic points for f of period n. In this paper we exhibit an open set N in the space of diffeomorphisms Diffr(M) such for a Baire generic diffeomorphism f∈N the number of periodic points Pnf grows with a period n faster than any following sequence of numbers {an}n∈Z+ along a subsequence, i.e. Pn(f)>ani for some ni→∞ with i→∞. In the cases of surface diffeomorphisms, i.e. dim M≡2, an open set N with a supergrowth of the number of periodic points is a Newhouse domain. A proof of the man result is based on the Gontchenko–Shilnikov–Turaev Theorem [GST]. A complete proof of that theorem is also presented.
引用
收藏
页码:253 / 271
页数:18
相关论文
共 50 条
  • [41] Approximating ω-limit sets with periodic orbits
    Emma D’Aniello
    Timothy H. Steele
    Aequationes mathematicae, 2008, 75 : 93 - 102
  • [42] Superluminal periodic orbits in the Lorenz system
    Algaba, A.
    Merino, M.
    Rodriguez-Luis, A. J.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 39 : 220 - 232
  • [43] Organization of the periodic orbits in the Rossler flow
    Dong, Chengwei
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2018, 32 (21):
  • [44] PERIODIC ORBITS WITH PRESCRIBED ABBREVIATED ACTION
    Paternain, Miguel
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (09) : 4001 - 4008
  • [45] CONTRACTIBLE PERIODIC ORBITS OF LAGRANGIAN SYSTEMS
    Paternain, Miguel
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 99 (03) : 445 - 453
  • [46] 3-PERIODIC ORBIT IMPLYING 6831726876986508 85-PERIODIC ORBITS - INFIMUMS OF NUMBERS OF PERIODIC-ORBITS IN CONTINUOUS-FUNCTIONS
    MAI, JH
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY & TECHNOLOGICAL SCIENCES, 1991, 34 (10): : 1194 - 1204
  • [47] Bifurcation of periodic orbits of periodic equations with multiple parameters by averaging method
    Sheng, Lijuan
    Wang, Shanshan
    Li, Xueli
    Han, Maoan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 490 (02)
  • [48] Periodic orbits in perturbed generalized Hamiltonian systems
    Zhao, XH
    Li, JB
    Huang, KL
    ACTA MATHEMATICA SCIENTIA, 1995, 15 (04) : 370 - 384
  • [49] Data-Driven Stabilization of Periodic Orbits
    Bramburger, Jason J.
    Kutz, J. Nathan
    Brunton, Steven L.
    IEEE ACCESS, 2021, 9 : 43504 - 43521
  • [50] Periodic orbits and trace formula - Integrable systems
    Song, JJ
    Li, XG
    Liu, F
    Li, SW
    HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 2001, 25 (09): : 872 - 876