Ground states of a nonlinear Schrödinger system with nonconstant potentials

被引:0
作者
HaiDong Liu
ZhaoLi Liu
机构
[1] Jiaxing University,College of Mathematics, Physics and Information Engineering
[2] Capital Normal University,School of Mathematical Sciences
来源
Science China Mathematics | 2015年 / 58卷
关键词
ground state; Schrödinger system; variational method; 35A15; 35J50;
D O I
暂无
中图分类号
学科分类号
摘要
In the case where either the potentials Vj, µj and β are periodic or Vj are well-shaped and µj and β are anti-well-shaped, existence of a positive ground state of the Schrödinger system \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\left\{ \begin{gathered} - \Delta u_1 + V_1 (x)u_1 = \mu _1 (x)u_1^3 + \beta (x)u_1 u_2^2 in\mathbb{R}^N , \hfill \\ - \Delta u_2 + V_2 (x)u_2 = \beta (x)u_1^2 u_2 + u_2 (x)u_2^3 in\mathbb{R}^N , \hfill \\ u_j \in H^1 (\mathbb{R}^N ),j = 1,2, \hfill \\ \end{gathered} \right.$\end{document} where N = 1, 2, 3, is proved provided that β is either small or large in terms of Vj and µj. The system with constant coefficients has been studied extensively in the last ten years, and the nonconstant coefficients case has seldom been studied. It turns out that new technical machineries in the setting of variational methods are needed in dealing with the nonconstant coefficients case.
引用
收藏
页码:257 / 278
页数:21
相关论文
共 69 条
[11]  
Malchiodi A(2010)Homoclinic type solutions for a semilinear elliptic PDE on ℝ Ann Inst H Poincaré Anal Non Linéaire 27 953-969
[12]  
Ruiz D(1986)A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system Arch Rational Mech Anal 31 283-308
[13]  
Bartsch T(1998)On the existence of positive entire solutions of a semilinear elliptic equations Phys Rev E 58 6700-6707
[14]  
Dancer E N(1999)Solitary waves for two and three coupled nonlinear Schrödinger equations Phys Rev Lett 82 1152-1155
[15]  
Wang Z Q(2002)Solitary waves for J Phys A: Math Gen 35 8913-8928
[16]  
Bartsch T(2006) coupled nonlinear Schrödinger equations Ann Inst H Poincaré Anal Non Linéaire 23 829-837
[17]  
Wang Z Q(2005)Special set and solutions of coupled nonlinear Schrödinger equations Comm Math Phys 255 629-653
[18]  
Bartsch T(1984)Ground states of nonlinear Schrödinger equations with potentials Ann Inst H Poincaré Anal Non Linéaire 1 109-145
[19]  
Wang Z Q(2008)Ground state of Comm Math Phys 282 721-731
[20]  
Benci V(2010) coupled nonlinear Schrödinger equations in ℝ Adv Nonlinear Studies 10 175-193