Generalized q-Bernoulli Polynomials Generated by Jackson q-Bessel Functions

被引:0
|
作者
S. Z. H. Eweis
Z. S. I. Mansour
机构
[1] Beni-Suef University,Department of Mathematics and Computer Science, Faculty of Science
[2] Cairo University,Department of Mathematics, Faculty of Science
来源
Results in Mathematics | 2022年 / 77卷
关键词
-Bessel functions; -Bernoulli polynomials and numbers; asymptotic expansions; Cauchy residue theorem; 05A30; 11B68; 30E15; 32A27;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the polynomials Bn,α(k)(x;q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{(k)}_{n,\alpha }(x;q)$$\end{document} generated by a function including Jackson q-Bessel functions Jα(k)(x;q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^{(k)}_{\alpha }(x;q)$$\end{document}(k=1,2,3),α>-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (k=1,2,3),\,\alpha >-1$$\end{document}. The cases α=±12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =\pm \frac{1}{2}$$\end{document} are the q-analogs of Bernoulli and Euler,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{,}$$\end{document}s polynomials introduced by Ismail and Mansour for (k=1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k=1,2)$$\end{document}, Mansour and Al-Towalib for (k=3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k=3)$$\end{document}. We study the main properties of these polynomials, their large n degree asymptotics and give their connection coefficients with the q-Laguerre polynomials and little q-Legendre polynomials.
引用
收藏
相关论文
共 14 条
  • [1] Generalized q-Bernoulli Polynomials Generated by Jackson q-Bessel Functions
    Eweis, S. Z. H.
    Mansour, Z. S., I
    RESULTS IN MATHEMATICS, 2022, 77 (03)
  • [2] On certain triple q-integral equations involving the third Jackson q-Bessel functions as kernel
    Zeinab S Mansour
    Maryam A Al-Towailb
    Advances in Difference Equations, 2016
  • [3] Generalized q-Bessel function and its properties
    Mansour Mahmoud
    Advances in Difference Equations, 2013
  • [4] Asymptotic Expansions for the Radii of Starlikeness of Normalized q-Bessel Functions
    Baricz, Arpad
    Kumar, Pranav
    Singh, Sanjeev
    RESULTS IN MATHEMATICS, 2024, 79 (07)
  • [5] q-Bessel positive definite and Dq-completely monotonic functions
    Lazhar Dhaouadi
    Sana Guesmi
    Ahmed Fitouhi
    Positivity, 2012, 16 : 107 - 129
  • [6] On the Lévy–Khintchine representation of q-Bessel negative definite functions
    Lazhar Dhaouadi
    Amel Safraoui
    Ahmed Fitouhi
    Positivity, 2013, 17 : 81 - 100
  • [7] Some identities of higher order Barnes-type q-Bernoulli polynomials and higher order Barnes-type q-Euler polynomials
    Lee-Chae Jang
    Sang-Ki Choi
    Hyuck In Kwon
    Advances in Difference Equations, 2015
  • [8] The generalized Laguerre polynomials, the associated Bessel functions and application to propagation problems
    Dattoli, G
    Torre, A
    Mancho, AM
    RADIATION PHYSICS AND CHEMISTRY, 2000, 59 (03) : 229 - 237
  • [9] Some integrals involving squares of Bessel functions and generalized Legendre polynomials
    Matagne, E.
    ADVANCED ELECTROMAGNETICS, 2022, 11 (04) : 80 - 83
  • [10] Some Generalizations and Basic (or q-) Extensions of the Bernoulli, Euler and Genocchi Polynomials
    Srivastava, H. M.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2011, 5 (03): : 390 - 444