Controllability Results for Nonlinear Fractional-Order Dynamical Systems

被引:0
|
作者
K. Balachandran
V. Govindaraj
L. Rodríguez-Germa
J. J. Trujillo
机构
[1] Bharathiar University,Department of Mathematics
[2] Universidad de La Laguna,Departamento de Análisis Matemático
来源
Journal of Optimization Theory and Applications | 2013年 / 156卷
关键词
Controllability; Fractional Differential Equations; Mittag–Leffler Matrix Function; Schaefer’s Fixed-Point Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
This paper establishes a set of sufficient conditions for the controllability of nonlinear fractional dynamical system of order 1<α<2 in finite dimensional spaces. The main tools are the Mittag–Leffler matrix function and the Schaefer’s fixed-point theorem. An example is provided to illustrate the theory.
引用
收藏
页码:33 / 44
页数:11
相关论文
共 50 条
  • [1] Controllability Results for Nonlinear Fractional-Order Dynamical Systems
    Balachandran, K.
    Govindaraj, V.
    Rodriguez-Germa, L.
    Trujillo, J. J.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 156 (01) : 33 - 44
  • [2] Controllability of nonlinear higher order fractional dynamical systems
    Balachandran, K.
    Govindaraj, V.
    Rodriguez-Germa, L.
    Trujillo, J. J.
    NONLINEAR DYNAMICS, 2013, 71 (04) : 605 - 612
  • [3] Controllability of nonlinear higher order fractional dynamical systems
    K. Balachandran
    V. Govindaraj
    L. Rodríguez-Germá
    J. J. Trujillo
    Nonlinear Dynamics, 2013, 71 : 605 - 612
  • [4] Controllability of nonlinear fractional dynamical systems
    Balachandran, K.
    Park, J. Y.
    Trujillo, J. J.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) : 1919 - 1926
  • [5] CONTROLLABILITY OF NONLINEAR FRACTIONAL DELAY DYNAMICAL SYSTEMS
    Nirmala, R. Joice
    Balachandran, K.
    Rodriguez-Germa, L.
    Trujillo, J. J.
    REPORTS ON MATHEMATICAL PHYSICS, 2016, 77 (01) : 87 - 104
  • [6] Approximate controllability of nonlinear fractional dynamical systems
    Sakthivel, R.
    Ganesh, R.
    Ren, Yong
    Anthoni, S. M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (12) : 3498 - 3508
  • [7] ON THE CONTROLLABILITY OF FRACTIONAL DYNAMICAL SYSTEMS
    Balachandran, Krishnan
    Kokila, Jayakumar
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2012, 22 (03) : 523 - 531
  • [9] Controllability of nonlinear stochastic neutral fractional dynamical systems
    Rajendran, Mabel Lizzy
    Balachandran, Krishnan
    Trujillo, Juan J.
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2017, 22 (05): : 702 - 718
  • [10] THE CONTROLLABILITY OF NONLINEAR IMPLICIT FRACTIONAL DELAY DYNAMICAL SYSTEMS
    Joice Nirmala, Rajagopal
    Balachandran, Krishnan
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2017, 27 (03) : 501 - 513