Higher Algebraic K-theory for Twisted Laurent Series Rings Over Orders and Semisimple Algebras

被引:0
作者
Aderemi Kuku
机构
[1] The University of Iowa,Mathematics Department
[2] Max-Planck-Institut für Mathematik,undefined
来源
Algebras and Representation Theory | 2008年 / 11卷
关键词
-theory; Twisted Laurent series rings; Semisimple algebras; Orders; Virtually infinite cyclic group; 19D35; 16S35; 16H05; 16S34;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be the ring of integers in a number field F, Λ any R-order in a semisimple F-algebra Σ, α an R-automorphism of Λ. Denote the extension of α to Σ also by α. Let Λα[T] (resp. Σα[T] be the α-twisted Laurent series ring over Λ (resp. Σ). In this paper we prove that (i) There exist isomorphisms \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{Q}\otimes K_{n}(\Lambda_{\alpha}[T])\simeq \mathbb{Q}\otimes G_{n}(\Lambda_{\alpha}[T])\simeq \mathbb{Q}\otimes K_{n}(\Sigma_{\alpha}[T])$\end{document}) for all n ≥ 1. (ii) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G^{\rm pr}_n(\Lambda_{\alpha}[T],\hat{Z}_l)\simeq G_n(\Lambda_{\alpha}[T],\hat{Z}_l)$\end{document}is an l-complete profinite Abelian group for all n≥2. (iii)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\rm div} G^{\rm pr}_n(\Lambda_{\alpha}[T],\hat{Z}_l)=0$\end{document}for all n≥2. (iv)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G_n(\Lambda_{\alpha}[T]) \longrightarrow G^{\rm pr}_n(\Lambda_{\alpha}[T],\hat{Z}_l)$\end{document}is injective with uniquely l-divisible cokernel (for all n≥2). (v) K–1(Λ), K–1(Λα[T]) are finitely generated Abelian groups.
引用
收藏
页码:355 / 368
页数:13
相关论文
共 15 条
  • [1] Borel A.(1984)Stable real cohomology of arithmetic groups Ann. Sci. École Norm. Sup. 7 235-272
  • [2] Carter D.W.(1980)Localization in lower algebraic Comm. Algebra 8 603-622
  • [3] Conolly F.(2002)-theory Car. Math. Bull. 45 180-195
  • [4] Prassidis S.(1993)On the exponents of J. Amer. Math. Soc. 6 249-297
  • [5] Farrell F.T.(1995) groups of virtually infinite cyclic groups K-Theory 9 13-30
  • [6] Jones L.E.(1985)Isomorphisms conjectures in algebraic J. Algebra 91 18-31
  • [7] Farrell F.T.(1986)-theory Contemp. Math. AMS 55 333-338
  • [8] Jones L.E.(1999)The lower algebraic J. Pure Appl. Algebra 138 39-44
  • [9] Kuku A.O.(2001)-theory of virtually infinite cyclic groups K-theory 22 367-392
  • [10] Kuku A.O.(2005)-theory of grouprings of finite groups over maximal orders in division algebras K-Theory 36 51-58