Rigid Properties of Generalized τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-Quasi Ricci-Harmonic Metrics

被引:0
作者
Fanqi Zeng
机构
[1] Xinyang Normal University,School of Mathematics and Statistics
关键词
Generalized ; -quasi Ricci-harmonic metric; harmonic-Einstein; rigid property; Ricci curvature; scalar curvature; Primary 53C21; Secondary 53C25;
D O I
10.1007/s00025-020-01299-w
中图分类号
学科分类号
摘要
In this paper, we study compact generalized τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-quasi Ricci-harmonic metrics. In the first part, we explore conditions under which generalized τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-quasi Ricci-harmonic metrics are harmonic-Einstein and give some characterization results for this case. In the second part, we obtain some rigidity results for compact (τ,ρ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\tau , \rho )$$\end{document}-quasi Ricci-harmonic metrics which are a special case of generalized τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-quasi Ricci-harmonic metrics. In the third part, we give two gap theorems for compact τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-quasi Ricci-harmonic metrics by showing some necessary and sufficient conditions for the metrics to be harmonic-Einstein.
引用
收藏
相关论文
共 48 条
[1]  
Barros A(2014)Characterizations and integral formulae for generalized Bull. Braz. Math. Soc. (N.S.) 45 325-341
[2]  
Ribeiro E(2009)-quasi-Einstein metrics ALM 11 1-38
[3]  
Cao H(2011)Recent progress on Ricci soliton Differ. Geom. Appl. 29 93-100
[4]  
Case J(2012)Rigidity of quasi-Einstein metrics Math. Z. 271 751-756
[5]  
Shu J(2015)Generalized quasi-Einstein manifolds with harmonic Weyl tensor Math. Nachr. 288 1122-1126
[6]  
Wei G(1964)A note on generalized quasi-Einstein manifolds Am. J. Math. 86 109-169
[7]  
Catino G(2012)Harmonic mappings of Riemannian manifolds Int. J. Math. 23 9-1804
[8]  
Deng Y(2015)Some gap theorems for gradient Ricci solitons Acta Math. Sin. (Engl. Ser.) 31 1798-312
[9]  
Eells J(2012)On gradient solitons of the Ricci-harmonic flow Commun. Anal. Geom. 20 271-743
[10]  
Sampson J(2015)On the classification of warped product Einstein metrics J. Math. Anal. Appl. 432 733-851