Efficient entanglement concentration for partially entangled cluster states with weak cross-Kerr nonlinearity

被引:0
作者
Huan-Juan Liu
Lin-Lin Fan
Yan Xia
Jie Song
机构
[1] Fuzhou University,Department of Physics
[2] Harbin Institute of Technology,Department of Physics
来源
Quantum Information Processing | 2015年 / 14卷
关键词
Entanglement concentration; Cluster state; Cross-Kerr nonlinearity;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose an optimal entanglement concentration protocol (ECP) for partially entangled cluster states with the help of the weak cross-Kerr nonlinearity. We can obtain the maximally entangled cluster states assisted with the projection measurements on the additional photons. The protocol is based on optical elements, single polarization photons, cross-Kerr nonlinearity, and the conventional photon detectors, which are feasible with existing experimental technology. Numerical simulation demonstrates that by iterating the entanglement concentration process n=m=6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=m=6$$\end{document} times, the ECP has the approximate maximal success probability 100 %. Moreover, the present protocol is also suitable for partially entangled 4N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4N$$\end{document}-photon cluster states concentration. All these advantages make this protocol more efficient and more convenient than others in the applications in quantum communication.
引用
收藏
页码:2909 / 2928
页数:19
相关论文
共 190 条
[1]  
Bennett CH(2000)Quantum information and computation Nature 404 247-undefined
[2]  
DiVincenzo DP(2002)Quantum cryptography Rev. Mod. Phys. 74 145-undefined
[3]  
Gisin N(1993)Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels Phys. Rev. Lett. 70 1895-undefined
[4]  
Ribordy G(1992)Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states Phys. Rev. Lett. 69 2881-undefined
[5]  
Tittel W(2002)General scheme for superdense coding between multiparties Phys. Rev. A 65 022304-undefined
[6]  
Zbinden H(1999)Quantum secret sharing Phys. Rev. A 59 1829-undefined
[7]  
Bennett CH(2004)Efficient multiparty quantum-secret-sharing schemes Phys. Rev. A 69 052307-undefined
[8]  
Brassard G(1996)Error correcting codes in quantum theory Phys. Rev. Lett. 77 793-undefined
[9]  
Crépeau C(1999)Dynamical decoupling of open quantum systems Phys. Rev. Lett. 82 2417-undefined
[10]  
Jozsa R(1996)Purification of noisy entanglement and faithful teleportation via noisy channels Phys. Rev. Lett. 76 722-undefined