FMP-Ensuring Logics, RA-Ensuring Logics and FA-Ensuring Logics in NExtK4.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {NExtK4.3}$$\end{document}

被引:0
|
作者
Ming Xu
机构
[1] Wuhan University,Department of Philosophy
关键词
Modal logic; Finite model property; Recursive axiomatizability; Finite axiomatizability; FMP-ensuring; RA-ensuring; FA-ensuring;
D O I
10.1007/s11225-023-10046-5
中图分类号
学科分类号
摘要
This paper studies modal logics whose extensions all have the finite model property, those whose extensions are all recursively axiomatizable, and those whose extensions are all finitely axiomatizable. We call such logics FMP-ensuring, RA-ensuring and FA-ensuring respectively, and prove necessary and sufficient conditions of such logics in NExtK4.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {NExtK4.3}$$\end{document}. Two infinite descending chains {Sk}k∈ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{{\textbf{S}}_{k}\}_{k\in \omega }$$\end{document} and {Sk∗}k∈ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{{\textbf{S}} _{k}^{*}\}_{k\in \omega }$$\end{document} of logics are presented, in terms of which the necessary and sufficient conditions are formulated as follows: A logic in NExtK4.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {NExtK4.3}$$\end{document} is FMP-ensuring iff it extends Sk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{S}}_{k}$$\end{document} for some k∈ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\in \omega $$\end{document}, it is RA-ensuring iff it extends Sk∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{S}}_{k}^{*}$$\end{document} for some k∈ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\in \omega $$\end{document}, and it is FA-ensuring iff it is finitely axiomatizable and extends Sk∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{S}}_{k}^{*}$$\end{document} for some k∈ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\in \omega $$\end{document}.
引用
收藏
页码:899 / 946
页数:47
相关论文
共 10 条