Heat Transfer in a Fluidized Bed with Immersed Tubes Using Moist Coal Particles

被引:0
作者
Dongwei Yang
Hongling Yu
Ruiyang Li
机构
[1] University of Shanghai for Science and Technology,Thermal Engineering Department, School of Energy and Power Engineering
来源
Arabian Journal for Science and Engineering | 2018年 / 43卷
关键词
Heat transfer; Moisture content; Fluidized beds; Angle of repose; CMC; Packet renewal model;
D O I
暂无
中图分类号
学科分类号
摘要
The moisture content of coal (MCC) has an important effect on the thermophysical properties and the granular flowability. However, it brings both active and negative influence to the heat transfer between the fluidizing moist coal and the immersed tubes in the fluidized bed. Four groups of bituminous coal with same size distribution (0.25–2.8 mm) but different MCC (7.86–15.18%) have been examined to study the variation of the heat transfer in an experimental setup. The average heat transfer coefficients (havg)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(h_{\mathrm{avg}})$$\end{document} for the four groups of test samples have the same changing trend by increasing the superficial velocity (Ug)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(U_{\mathrm{g}})$$\end{document}. However, the maximum heat transfer coefficients (hmax)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(h_{\mathrm{max}})$$\end{document} display different peak values. With the increase in MCC, the hmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{\mathrm{max}}$$\end{document} rises at first and begins to fall when reaching a critical value. To predict the havg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{\mathrm{avg}}$$\end{document} accurately with different MCC, the angle of repose has been imported to measure the variation of the granular flowability. A novel semiempirical correlation has been thereupon proposed by the dimensional analysis, and it accords well to the experimental data from this study and the previous research.
引用
收藏
页码:2263 / 2272
页数:9
相关论文
共 116 条
[1]  
Nomura S(2004)Coal blending theory for dry coal charging process Fuel 83 1771-1776
[2]  
Arima T(2013)Coal blend moisture—a boon or bane in cokemaking? Coke Chem. 56 126-136
[3]  
Kato K(2015)Effects of coal moisture control and coal briquette technology on structure and reactivity of cokes Coke Chem. 58 162-169
[4]  
Das SK(2009)Low-rank coal drying technologies-current status and new developments Dry. Technol. 27 403-415
[5]  
Nandy AS(2011)Drying of low-rank coal (LRC)—a review of recent patents and innovations Dry. Technol. 29 1763-1783
[6]  
Paul A(2015)Recent developments in drying and dewatering for low rank coals Prog. Energy Combust. Sci. 46 1-11
[7]  
Sahoo BK(1973)Heat transfer to objects immersed in fluidized beds Powder Technol. 8 273-282
[8]  
Chakraborty B(1995)Hydrodynamics of a pressurized fluidized bed with horizontal tubes: influence of pressure, fluidization velocity and tube-bank geometry Chem. Eng. Sci. 50 581-592
[9]  
Das A(2003)Heat transfer and bubble characteristics in a fluidized bed with immersed horizontal tube bundle Int. J. Heat Mass Transf. 46 399-409
[10]  
Cui P(2011)Combined resistance bubbling bed model for drying of solids in fluidized beds Heat Mass Transf. 48 621-625