Estimation of stability index for symmetric α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-stable distribution using quantile conditional variance ratios

被引:0
作者
Kewin Pączek
Damian Jelito
Marcin Pitera
Agnieszka Wyłomańska
机构
[1] Jagiellonian University,Institute of Mathematics
[2] Wrocław University of Science and Technology,Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center
关键词
Stable distribution; Heavy-tailed distribution; Conditional variance; Estimation; Tail index; Stability index; 62F10; 60E07; 62P35;
D O I
10.1007/s11749-023-00894-7
中图分类号
学科分类号
摘要
The class of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-stable distributions is widely used in various applications, especially for modeling heavy-tailed data. Although the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-stable distributions have been used in practice for many years, new methods for identification, testing, and estimation are still being refined and new approaches are being proposed. The constant development of new statistical methods is related to the low efficiency of existing algorithms, especially when the underlying sample is small or the distribution is close to Gaussian. In this paper, we propose a new estimation algorithm for the stability index, for samples from the symmetric α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-stable distribution. The proposed approach is based on a quantile conditional variance ratio. We study the statistical properties of the proposed estimation procedure and show empirically that our methodology often outperforms other commonly used estimation algorithms. Moreover, we show that our statistic extracts unique sample characteristics that can be combined with other methods to refine existing methodologies via ensemble methods. Although our focus is set on the symmetric α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-stable case, we demonstrate that the considered statistic is insensitive to the skewness parameter change, so our method could be also used in a more generic framework. For completeness, we also show how to apply our method to real data linked to financial market and plasma physics.
引用
收藏
页码:297 / 334
页数:37
相关论文
共 154 条
  • [11] Grigor’eva L(1980)Discriminating between light- and heavy-tailed distributions with limit theorem J Royal Stat Soci B (Methodol) 42 83-1832
  • [12] Sorokovoy EL(1999)A method for simulating stable random variables Stat Prob Lett 41 39-1444
  • [13] Romanov VS(1990)A simple asymptotic estimate for the index Ann Stat 17 1795-247
  • [14] Bidarkota PV(1999) of a stable distribution Geophys Res Lett 26 1441-57
  • [15] Dupoyet BV(2013)Estimating the index of a stable distribution J Econ 172 235-17
  • [16] McCulloch JH(1973)A moment estimator for the index of an extreme value distribution Ann Stat 1 948-307
  • [17] Brorsen BW(2011)Observation of alpha-stable noise induced millennial climate changes from an ice-core record Genetics 188 1-338
  • [18] Yang SR(2017)The method of simulated quantiles TEST 26 284-337
  • [19] Burnecki K(1971)On the asymptotic normality of the maximum-likelihood estimate when sampling from a stable distribution’ J Am Stat Assoc 66 331-26
  • [20] Wyłomańska A(2011)Intratumor heterogeneity in evolutionary models of tumor progression J Econ 161 325-1464