Estimation of stability index for symmetric α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-stable distribution using quantile conditional variance ratios

被引:0
作者
Kewin Pączek
Damian Jelito
Marcin Pitera
Agnieszka Wyłomańska
机构
[1] Jagiellonian University,Institute of Mathematics
[2] Wrocław University of Science and Technology,Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center
关键词
Stable distribution; Heavy-tailed distribution; Conditional variance; Estimation; Tail index; Stability index; 62F10; 60E07; 62P35;
D O I
10.1007/s11749-023-00894-7
中图分类号
学科分类号
摘要
The class of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-stable distributions is widely used in various applications, especially for modeling heavy-tailed data. Although the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-stable distributions have been used in practice for many years, new methods for identification, testing, and estimation are still being refined and new approaches are being proposed. The constant development of new statistical methods is related to the low efficiency of existing algorithms, especially when the underlying sample is small or the distribution is close to Gaussian. In this paper, we propose a new estimation algorithm for the stability index, for samples from the symmetric α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-stable distribution. The proposed approach is based on a quantile conditional variance ratio. We study the statistical properties of the proposed estimation procedure and show empirically that our methodology often outperforms other commonly used estimation algorithms. Moreover, we show that our statistic extracts unique sample characteristics that can be combined with other methods to refine existing methodologies via ensemble methods. Although our focus is set on the symmetric α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-stable case, we demonstrate that the considered statistic is insensitive to the skewness parameter change, so our method could be also used in a more generic framework. For completeness, we also show how to apply our method to real data linked to financial market and plasma physics.
引用
收藏
页码:297 / 334
页数:37
相关论文
共 154 条
  • [1] Akgiray V(1989)Estimation of stable-law parameters: a comparative study J Bus Econ Stat 7 85-93
  • [2] Lamoureux CG(1980)Parameter estimation for symmetric stable distribution Int Econ Rev 21 209-220
  • [3] Arad RW(2008)A Lévy flight for light Nature 453 495-498
  • [4] Barthelemy P(2021)On tails of symmetric and totally asymmetric Probab Math Stat 41 321-345
  • [5] Bertolotti J(2009)-stable distributions Plasma Phys Rep 35 818-823
  • [6] Wiersma DS(2009)Spectral and statistical analysis of fluctuations in the sol and diverted plasmas of the uragan-3m torsatron J Econ Dyn Control 33 1314-1331
  • [7] Bednorz W(1990)Asset pricing with incomplete information and fat tails Commun Stat - Simul Comput 19 1459-1464
  • [8] Łochowski R(2012)Maximum likelihood estimates of symmetric stable distribution parameters Phys Rev E 85 056711-344
  • [9] Martynek R(2015)Recognition of stable distribution with Lévy index PLoS ONE 10 e0145604-87
  • [10] Beletskii A(1976) close to 2 J Am Stat Assoc 71 340-55